
MEDLEY FILTERS – SIMPLE TOOLS FOR EFFICIENT SIGNAL SMOOTHING
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ABSTRACT
Medley filters are defined as convex combinations of ele-
mentary smoothing filters (averaging, median) with differ-
ent smoothing bandwidths. It is shown that when adaptive
weights of such a mixture are evaluated using the recently
proposed Bayesian rules, one obtains a tool which often out-
performs the state-of-the-art wavelet-based smoothing algo-
rithms. Additionally, unlike wavelet-based procedures, med-
ley filters can easily cope with non-Gaussian (Laplacian, uni-
form) and temporarily inhomogeneous measurement noise.

1. INTRODUCTION

Consider the problem of noncausal estimation of the signal
s(i) based on its noisy measurements y(i):

y(i) = s(i)+ v(i), i = . . . ,−1,0,1, . . . (1)

where i denotes normalized time and {v(i)} is the sequence
of independent random variables obeying the generalized
Gaussian law [1]

v∼ G N (µ,α,β ) :

p(v; µ,α,β ) =
β

2αΓ(1/β )
exp

{
−
(
|v−µ|

α

)β
}

(2)

where µ is the location parameter (we will assume that µ = 0,
i.e., that measurement noise is zero-mean), α > 0 is the un-
known scale parameter, β ≥ 1 is the known shape parameter,
and Γ(·) denotes Euler’s gamma function.
Generalized Gaussian is a parametric family of symmet-
ric distributions that includes the normal distribution when
β = 2 (with mean µ and variance α2/2), and the Laplace
distribution when β = 1 (with mean µ and variance 2α2).
When β → ∞, the density (2) converges pointwise to a uni-
form density on (µ −α,µ +α) (with mean µ and variance
α2/3).
Distributions corresponding to β ∈ [1,2) are referred to as
super-Gaussian or leptokurtic (with positive kurtosis). They
have heavier tails than Gaussian distribution, i.e., they as-
sign higher probabilities to extreme values. For this reason
Laplace distribution is often used to model mixtures of wide-
band noise and impulsive disturbances. When β ∈ (2,∞) the
distribution (2) is called sub-Gaussian or platykurtic (with
negative kurtosis). It has lighter tails than those of the nor-
mal distribution.
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To simplify our further considerations, we will assume that
an infinite observation history is available Y = {y(i), i ∈
(−∞,∞)}. Note that for a given time instant t, Y can be
decomposed into the set of “past” measurements Y−(t) =
{y(i), i < t}, the “present” measurement y(t), and the set of
“future” measurements Y+(t) = {y(i), i > t}:

Y = {Y−(t),y(t),Y+(t)}.
Our objective will be to find the estimate ŝ(t) = f [t,Y ] that
minimizes the mean-squared error

E
{
[s(t)− ŝ(t)]2

}
→min . (3)

It is well known [2] that the optimal, in the mean-square
sense, noncausal estimator of s(t) has the form

ŝ(t) = E[s(t)|Y ]. (4)

When the estimated signal admits a known state-space de-
scription, and when both the signal s(t) and measure-
ment noise v(t) are normally distributed, the conditional
mean estimate (4) can be computed using the celebrated
Kalman smoother. However, even though mathematically
well founded and statistically efficient (under assumptions
mentioned above), Kalman smoothers have limited practi-
cal applicability. In practice one needs algorithms which
are much less demanding in terms of the required prior
knowledge about the recovered signal, and which are capa-
ble of adapting to the unknown and/or time-varying degree
of signal smoothness and noise intensity. To fulfill this de-
mand, several powerful universal smoothing schemes were
proposed, i.e., schemes that require no, or very little, prior
knowledge of signal/noise characteristics. The best-known
examples of universal smoothers are those based on ker-
nel regression [3], [4], order statistic filtering [5], [6], and
wavelet thresholding (shrinkage) [7], [8], [9].
In this paper we present a very simple multiresolution
smoothing procedure combining outputs of several nonlin-
ear median filters, and several linear averaging filters. We
show that, when appropriately designed, the resulting med-
ley filter often outperforms, on a set of benchmarks signals,
the state-of-the-art wavelet-based procedures known for their
excellent smoothing capabilities. On the qualitative level,
we continue research on, increasingly popular, combination
schemes, where the outputs of several filters are mixed to-
gether to obtain an overall output of improved quality [10].

2. MEDLEY FILTERS

Denote by F = {ŝk(t),k = 1, . . . ,K} the family of elemen-
tary smoothers

ŝk(t) = fk[t,Y ] (5)
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with different smoothing bandwidths. The medley filter sup-
ported by F will be defined in the form

ŝ(t) =
K

∑
k=1

µk(t)ŝk(t) (6)

where µk(t) are data-dependent weights, further called cred-
ibility coefficients, that obey

K

∑
k=1

µk(t) = 1, µk(t)≥ 0, k = 1, . . . ,K, ∀t

Hence, ŝ(t) is a convex combination of component
smoothers.

2.1 Selection of Component Smoothers
As already noted in [11], a robust medley filter can be ob-
tained by combining probably the simplest smoothers used
in signal processing: linear averaging filters

ŝk(t) =
∑

nk
i=−nk

y(t + i)

2nk +1
(7)

and nonlinear median filters1

ŝk(t) = med{y(t−nk), . . . ,y(t +nk)} (8)

with local fitting frames Fk(t) = [t − nk, t + nk] of different
lengths Nk = 2nk + 1. Averaging filters efficiently remove
Gaussian noise from lowpass signals. Two remarkable fea-
tures of median filters are their ability to preserve step-like
signal features and their resistance to outliers – this makes
them an attractive choice for smoothing discontinuous sig-
nals and/or signals corrupted by impulsive noise. Both filters
have computationally efficient recursive implementations.
In Section 4 we will show that by combining averaging fil-
ters and median filters, one obtains quite powerful medley
filter, often outperforming wavelet-based solutions. We note
that averaging filters and median filters are the simplest rep-
resentatives of two more general classes of smoothing filters,
usually referred to as kernel smoothers [3] and order statistic
filters [5], respectively. Generally, good medley filters can
be obtained by combining tools from both classes mentioned
above.

2.2 Evaluation of Credibility Coefficients
Following [11], credibility coefficients will be evaluated us-
ing the following formula

µk(t) ∝

[
∑

i∈T (t)
|ε◦k (i)|β

]−M/β

(9)

where T (t) = [t−m, t+m] denotes the local evaluation frame
of lenght M = 2m+1 and

ε
◦
k (i) = y(i)− ŝ ◦k (i), i ∈ T (t)

denote matching errors, i.e., residual errors evaluated for the
holey smoother associated with ŝk(t). Holey smoother ŝ ◦k (t)

1med{·} denotes the central value of the ordered sequence of samples

is identical with ŝk(t), except that it excludes the “central”
sample y(t) from the set of measurements used for estimation
of s(t)

ŝ ◦k (t) = fk[t,Y ◦(t)], Y ◦(t) = Y −{y(t)} (10)

In the uniform noise case (β → ∞), one should set

µk(t) ∝

[
max
i∈T (t)

|ε◦k (i)|
]−M

For many nonlinear smoothing algorithms, including me-
dian filters, holey smoothers are either ill-defined or they
do not preserve important properties of the original scheme.
In cases like this, holey smoothers can be substituted with
patched smoothers, obtained by replacing the central sample
y(t) with the signal estimate ŝk(t), rather than by leaving y(t)
out

ŝ •k (t) = fk[t,Y •(t)], Y •(t) = Y
∣∣
y(t):=ŝk(t) (11)

Similar to the holey smoother, the patched smoother can be
used for the purpose of local evaluation of ŝk(·). This can be
accomplished by replacing matching errors ε◦k (i) in (9) with
the modified matching errors

ε
•
k (i) = y(i)− ŝ •k (i) .

Evaluation of smoothers in terms of the corresponding
matching errors is consistent with the long-standing statis-
tical approach known as leave-one-out cross-validatory anal-
ysis [12]. Similarly, the modified matching errors are the
cornerstone of the so-called full cross-validatory analysis,
proposed by Bunke at al. [13]. We note, however, that
cross-validation results in competitive, rather than cooper-
ative smoothing schemes (winner-takes-all strategy). Our
Bayesian framework brings the notion of filter credibility
into cross-validatory analysis.

2.3 Computational Hints
One can easily check that for the linear averaging filter (7) it
holds that

ε
◦
k (i) = δkεk(i), δk = nk/(nk−1)

ε
•
k (i) = ρkεk(i), ρk = (nk +1)/nk (12)

where
εk(i) = y(i)− ŝk(i)

denotes residual error. This means that both errors can be
computed without actually implementing the corresponding
holey/patched smoothers.
Even though the relationships (12) do not extend to nonlinear
filters, we have observed that they usually yield good approx-
imations when applied to validation of median filters.
Some of the quantities involved in computation of credibility
coefficients µk(t) may take very large or very small values.
The following modified expression, mathematically equiva-
lent to (9), allows one to avoid numerical problems (such as
numerical overflow) caused by improper scaling

µk(t) =
exp{χk(t)}

∑
K
k=1 exp{χk(t)}

(13)

642



where

χk(t) = ψk(t)−ψmax(t)
ψk(t) =−(M/β ) logrk(t)

ψmax(t) = max
1≤k≤K

ψk(t) .

and
rk(t) = ∑

i∈T (t)
|ε◦k (i)|β .

3. QUALITATIVE COMPARISON WITH WAVELET
THRESHOLDING

Since the wavelet thresholding (shrinkage) approach has the
reputation for being one of the most efficient denoising tools,
we will use it as a benchmark for both qualitative and quan-
titative evaluation of the proposed approach. Quantitative re-
sults will be presented in section 4. In this section we will
focus on some qualitative features of medley filters which, at
least in some applications, make them an interesting alterna-
tive to wavelet-based smoothers:
1. The basic rules of wavelet thresholding were derived un-

der the assumption that the additive measurement noise
is Gaussian. In contrast with this, medley filters can be
trimmed to the (known) distribution of noise, including
practically important non-Gaussian cases such as Lapla-
cian distribution and uniform distribution.

2. While procedures based on wavelet thresholding are
block-oriented, i.e., they can be used for fixed-interval
smoothing only (suitable for off-line applications), med-
ley filters are fixed-lag smoothers and, as such, they can
be used in near real-time applications, where a constant
decision delay of τ sampling intervals is tolerable. Note
that for the smoother combining averaging filters (7) and
median filters (8) such a decision delay, or lag, is given
by τ = max{m+1,nk +1,k = 1, . . . ,K}.

3. Due to global thresholding, all wavelet-based denoising
procedures fail to work correctly when noise variance
changes across the analysis frame. Since the medley fil-
ter is a local smoothing algorithm, which does not require
information about the local noise variance (note that the
credibility coefficients do not depend on the scale pa-
rameter α), it can easily cope with temporally inhomo-
geneous noise.

4. QUANTITATIVE COMPARISON WITH
WAVELET THRESHOLDING

The four test signals used in our simulation experiments
were proposed by Donoho and Johnstone [8], and are called
Blocks, Bumps, Doppler and HeaviSine, respectively (see
Fig. 1). They exemplify different forms of spatial and tempo-
ral inhomogeneity encountered in many real-world signals.
Since it is agreeably difficult to design a smoothing algorithm
that copes favorably with all four signals, they constitute a
demanding testbed, commonly used for benchmarking pur-
poses.
Test signals, each containing 2048 samples, were extended
by zeros at both ends (to avoid boundary problems) and cor-
rupted with Gaussian (β = 2), Laplacian (β = 1), or uniform
(β = ∞) white noise with intensity varying from σ2

v = 0.01
to σ2

v = 25. We note that for a fixed value of σv the average
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Figure 1: Test signals: Blocks (top left), Bumps (top right),
Doppler (bottom left), and HeaviSine (bottom right).

signal-to-noise ratio (SNR) is for all test signals the same,
e.g. for σ2

v = 1 it is equal to 16.9 dB.
The bank of component filters consisted of five averaging fil-
ters and five median filters, with fitting frames of lenghts
Nk = 2nk + 1,k = 1, . . . ,5, forming (approximately) a geo-
metric progression: N1 = 5, N2 = 11, N3 = 23, N4 = 47,
N5 = 95. The width M of the evaluation frame was set equal
31 (m = 15).
Fig. 2 shows the performance comparison between the med-
ley filter and its component filters. The plots show depen-
dence of the average MSE scores on standard deviation of an
additive Gaussian noise. All results were obtained by ensem-
ble averaging over 100 realizations of measurement noise.
Note that the medley filter almost always works better than
component filters.
Tables 1, 2, and 3 show the comparison of the medley fil-
ter with the state-of-the-art wavelet thresholding procedures
VisuShrink [8] and BayesShrink [9] (for the Daubechies D6
basis). Despite its simplicity, in a majority of cases the pro-
posed scheme yields better results than procedures based on
wavelet thresholding. Wavelet-based procedures work better
when the average SNR is large (> 30 dB). Since wavelets
constitute a complete set of basis functions (i.e., every finite-
length sequence has an exact representation in the wave-
length domain), this high-SNR advantage of wavelet-based
methods is expected and practically impossible to beat.
Finally, Figs. 3–5 illustrate the inhomogeneous noise ex-
periment. Test signals were corrupted by Gaussian noise,
the standard deviation of which linearly grew from 0.5 to
2 along the time axis (Fig. 3). Results of smoothing, pre-
sented in Fig. 4, confirm that medley filter can success-
fully adapt to changing conditions – the corresponding MSE
scores were equal to 0.1564, 0.7118, 0.1176 and 0.0778 for
Blocks, Bumps, Doppler and HeaviSine, respectively. Fig. 6
shows the analogous results obtained using the BayesShrink
procedure (which worked better than VisuShrink). As ex-
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σn Test signal VisuShrink BayesShrink Medley
Blocks 0.0019 0.0083 0.0013

0.1 Bumps 0.0038 0.0084 0.5502
Doppler 0.0033 0.0049 0.0195
HeaviSine 0.0008 0.0028 0.0011
Blocks 0.0611 0.1057 0.0269

0.5 Bumps 0.0681 0.1194 0.5804
Doppler 0.0572 0.0627 0.0529
HeaviSine 0.0247 0.0241 0.0167
Blocks 0.2497 0.2595 0.1045

1.0 Bumps 0.2870 0.3546 0.6593
Doppler 0.1832 0.1813 0.1240
HeaviSine 0.0812 0.0602 0.0589
Blocks 0.9776 0.7941 0.4095

2.0 Bumps 1.1406 1.0186 0.9467
Doppler 0.6283 0.4795 0.3521
HeaviSine 0.2085 0.1478 0.2046
Blocks 4.2541 2.4839 2.1203

5.0 Bumps 5.5822 3.7826 2.7255
Doppler 2.2825 1.6912 1.6480
HeaviSine 0.8924 0.4817 1.1219

Table 1: Performance comparison (MSE) of the medley fil-
ter with two denoising procedures based on wavelet thresh-
olding: VisuShrink and BayesShrink. Test signals were cor-
rupted by Gaussian noise with standard deviation σn.
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Figure 2: Comparison of MSE errors yielded by component
averaging filters (thin lines marked with squares), compo-
nent median filters (thin lines marked with triangles) and
medley filter (thick line marked with circles). Results are
shown for four test signals: Blocks (top left), Bumps (top
right), Doppler (bottom left), and HeaviSine (bottom right),
corrupted by Gaussian noise with standard deviation σn.

pected, due to global thresholding, in three out of four cases
wavelet-based procedures work considerably worse than the
medley filter (the corresponding MSE scores were equal to
0.5186, 0.5091, 0.3519 and 0.1056).

σn Test signal VisuShrink BayesShrink Medley
Blocks 0.0021 0.0087 0.0007

0.1 Bumps 0.0037 0.0088 0.5800
Doppler 0.0033 0.0057 0.0193
HeaviSine 0.0012 0.0042 0.0008
Blocks 0.0631 0.1374 0.0173

0.5 Bumps 0.0699 0.1486 0.6121
Doppler 0.0625 0.0853 0.0489
HeaviSine 0.0321 0.0427 0.0121
Blocks 0.2622 0.3819 0.0681

1.0 Bumps 0.2807 0.4435 0.6796
Doppler 0.2106 0.2568 0.1086
HeaviSine 0.1282 0.1408 0.0410
Blocks 0.9912 1.0119 0.2813

2.0 Bumps 1.1481 1.2952 0.8823
Doppler 0.7642 0.7925 0.2834
HeaviSine 0.4310 0.4657 0.1345
Blocks 5.0145 4.0721 1.4481

5.0 Bumps 6.0569 5.7126 2.2950
Doppler 3.5126 3.6715 1.2266
HeaviSine 2.2075 2.4523 0.7349

Table 2: Performance comparison (MSE) of the medley fil-
ter with two denoising procedures based on wavelet thresh-
olding: VisuShrink and BayesShrink. Test signals were cor-
rupted by Laplacian noise with standard deviation σn.

σn Test signal VisuShrink BayesShrink Medley
Blocks 0.0021 0.0079 0.3587

0.1 Bumps 0.0041 0.0080 0.5519
Doppler 0.0037 0.0049 0.0220
HeaviSine 0.0008 0.0022 0.0133
Blocks 0.0677 0.0856 0.3514

0.5 Bumps 0.0770 0.1054 0.5765
Doppler 0.0648 0.0573 0.0494
HeaviSine 0.0278 0.0251 0.0199
Blocks 0.2807 0.2812 0.3898

1.0 Bumps 0.3250 0.3884 0.6476
Doppler 0.2079 0.1860 0.1071
HeaviSine 0.0858 0.0645 0.0452
Blocks 1.1068 0.8653 0.6237

2.0 Bumps 1.2912 0.9808 0.9032
Doppler 0.6861 0.4887 0.2936
HeaviSine 0.2218 0.1577 0.1234
Blocks 4.6546 2.5623 2.0343

5.0 Bumps 6.3941 3.6510 2.4581
Doppler 2.4896 1.6804 1.2102
HeaviSine 1.0222 0.4508 0.5698

Table 3: Performance comparison (MSE) of the medley fil-
ter with two denoising procedures based on wavelet thresh-
olding: VisuShrink and BayesShrink. Test signals were cor-
rupted by uniform noise with standard deviation σn.

5. CONCLUSION

We have shown that by combining several linear averag-
ing filters and several nonlinear median filters, one obtains
a powerful smoothing algorithm, called medley filter. Un-
der medium and low SNR conditions, medley filter outper-
forms wavelet-based procedures, known of their very good
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Figure 3: Test signals corrupted by white inhomogeneous
Gaussian noise.

smoothing properties. Medley filter accounts for distribution
of measurement noise and deals favorably with inhomoge-
neous noise. Additionally, unlike wavelet-based procedures,
it can be used as a fixed-lag smoother.
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Figure 4: Test signals denoised using the medley filter.
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