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ABSTRACT
We take the standing that a characterization of an image, to-
gether with a knowledge of the class the image belongs to, is
required information to assess the quality of the image. We
consider characterizations of images in colour spaces of the
hue-saturation-luminance (ησλ for short) type. We use word
descriptors, the entropy of hue circular histograms and other
indexes that summarize the characterization process. We in-
troduce two spaces of the type ησλ ; one is spherical; in the
other, the saturation is not normalized by the luminance (un-
like the HSV, HSL and HSI spaces).

1. INTRODUCTION

We consider the no-reference assessment of colour image
quality. The hue, saturation (or colourfulness) and luminance
variables are denoted here as η , σ and λ , respectively; ησλ

spaces are more intuitive than RGB colour space and this is
an advantage when estimating colour image quality. Even
though the luminance component is the main determinant of
image quality, the chromatic aspects are important as well.
We consider the main aspects of image quality to be read-
ability and aesthetics.

To assess image quality, we initially characterize the im-
age along several dimensions. Then, depending on the class
(e.g. natural scenes) the image is considered to be in, the
quality assessment process can proceed.

Location-Dispersion plots [5] along each of the dimen-
sions η , σ and λ , provide useful characterizations of colour
images. For the three components of hue, saturation and lu-
minance and for a window that is placed at a large and repre-
sentative set of positions across the image, we compute cor-
responding values of location (e.g. the midrange µ , or the
circular average) and of dispersion (e.g. the linear range ρ ,
or the circular range); indeed, using scatter plots, we plot the
dispersion as a function of the location. The hue component,
being of a circular nature, requires of the use of special tools,
such as circular averages. The information in such scatter
plots is then summarized with the help of word descriptors.

We present two new colour spaces; one has a double-cone
image space and is labeled ρµ; in it, the range (i.e. the max
minus the min) of the triple (R, G, B) is used as an unnor-
malized measure of saturation, while the midrange (i.e. the
average of the max and the min) is used as a measure of lu-
minance. Pixelwise plots of saturation versus luminance are
then used to chromatically characterize colour images. Also,
a spherical colour space, where the colour attributes being
made explicit are those of hue, colourfulness and brightness
is presented; it is called Runge space and is labeled ηκλ . A
simple application of colour modification in virtual restora-
tion, using this space, is shown.

The readability of an image depends on its of contrast
contents while its aesthetics is dependant both on hue loca-
tion and on variety of luminance and saturation. We mea-
sure contrast along the hue, saturation and luminance com-
ponents; likewise, we measure variety as the nonuniformity
of circular histograms of the hue variable, and use codes for
the ways the ρµ-triangle is covered.

2. ησλ -TYPE SPACES

The ησλ variables can be derived from RGB values in sev-
eral ways, as in the spaces HSV, HSL and HSI. Usually, ησλ

spaces normalize the saturation component by the luminance
component; this results in saturation artifacts at luminance
values near 0, near 1, or both.

Geometrically, the luminance of a colour point in RGB
cube is a measure of its distance to the origin while the satu-
ration is a measure of the distance to the achromatic line (in
Runge space, defined below, the saturation is given by a dis-
tance to intermediate gray which has RGB coordinates [1/2,
1/2, 1/2]); the hue is a measure of the angle that is measured
on the projection on the plane that contains the basis elements
R, G and B, with axis the achromatic line, and measured with
respect to R.

2.1 Important subsets of the RGB cube

Call the origin [0, 0, 0] of the RGB cube pure black, the
point [1, 1, 1] pure white, the line segment between them the
achromatic segment Φ and the plane through the origin or-
thogonal to Φ, the chromatic plane Π. Call the faces of the
cube with points with min(R,G,B) = 0, the dark corner of
the cube, and those with max(R,G,B) = 1, the light corner.
The star (i.e. a set of edges) of those edges of the cube with
zero median is the black corner of the cube while the star
of the edges with unitary median is the white corner of the
cube. Call the polygon formed by the edges of the cube of
points (R,G,B) with min(R,G,B) = 0 and max(R,G,B) = 1,
the chromatic hexagon. Finally, call each triangle that has
Φ as one its sides and a point on the chromatic hexagon as
corresponding opposite vertex, a (constant-) hue triangle or
a chromatic triangle. Colour points on Φ (called achromatic
colours) have an undefined hue and the colours on each chro-
matic triangle have the same hue.

Using barycentric coordinates (with reference to the
tetrahedron with vertices pure black, red, green and blue) for
the points (R,G,B) on each chromatic triangle having a ver-
tex (r,g,b) on the chromatic hexagon, one has (R,G,B) =
λ1(1,1,1)+λ2(r,g,b)+λ3(0,0,0) = λ1(1,1,1)+λ2(r,g,b).
Therefore, the points in the cube with a given ordering of the
components R, G and B (there are six such orderings) form a
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tetrahedron with slices given by chromatic triangles.

2.2 The spaces HSL, HSI, HSV and ηρµ: caveats
In the spaces HSV, HSI and HSL, the points on the dark cor-
ner, different from pure black, have saturation σ = 1 and,
since the saturation of pure black (and of each point on the
achromatic line) is defined to be 0, one has a discontinuity of
the corresponding transformations from RGB space.

The range ρ(R,G,B) = max(R,G,B)−min(R,G,B) and
the midrange µ(R,G,B) = max(R,G,B)+min(R,G,B)

2 of the triple
(R,G,B) are respectively measures of saturation [1] and of
luminance that we use below. The midrange is the luminance
component of HSL colour space. We denote as ρ1 the quasir-
ange median(R,G,B)−min(R,G,B) and we denote as µ2 the
”upper midrange” max(R,G,B)+median(R,G,B)

2 .
The saturation component of the space HSL is defined

as σ = ρ

2µ
, if 0 < µ <= 0.5 and σ = ρ

2(1−µ) , if 1 > µ >=
0.5. The circular hue component η is coded in the interval
[− 1

6 , 5
6 ], and is defined as η = 1

6
G−B

ρ
for the orderings RBG

and RGB; η = 1
6

B−R
ρ

+ 1
3 , for the orderings GRB and GBR,

and η = 1
6

R−G
ρ

+ 2
3 , for the orderings BGR and BRG.

For constant values of the luminance component µ , near
0 and near 1, a very small change of ρ results in a large
change of HSL’s saturation.

For the space HSI, the luminance component is given by
the projection [I, I, I] of the colour point C := [R,G,B] on
the line Φ and is given by I = R+G+B

3 . The projection of the
colour point on the plane Π is given by 1

3 [2R−G−B,2G−
R−B,2B−R−G]. The hue component is defined as the an-
gle that the projection PΠ(C) makes with the projection [2/3,
-1/3, -1/3] of pure red. The cosine of H is then given by α :=
cos(H) = 2R−G−B

2
√

R2+G2+B2−RG−RB−GB
, which can be derived as

the cosine in a dot product (our edition of [2], on page 94,
has a typo for this formula). Alternatively, writing PΠ(C) =
[a,b,−(a + b)], we have C = [I, I, I] + [a,b,−(a + b)] and
the alternate expression α =

√
3a

2
√

a2+b2+ab
results. One gets

η = arcos(α), if G≥ B, and H =−arcos(α) if G≤ B.

Figure 1: Caped cylinder of image HSI space.

The saturation component of the HSI space is given by
S := 1− min(R,G,B)

I = 2
3

µ2−min
I . The set of values that the

saturation-luminance pair (S, I) can take, depends on the
value of the hue component H. This posses problems since,
for the modification of the hue at large values of I, it may be
necessary to modify the saturation as well. For a given hue
H, the possible values of the pair (S, I) are bounded below
by the line segment I = 0, with S ∈ [0,1]; on the left, by the
axis S = 0 with I ∈ [0,1], on the left and above, by the ver-
tical segment {(S, I) : S = 1, I ∈ [0, I0]} and a segment of a

hyperbola {(S, I) : I = I0
I0+(1−I0)S ,S ∈ [0,1]}; I0 is indirectly

a function of the hue H; more directly, it is a function of the
median med’ of the point on the chromatic hexagon that is
vertex of the chromatic triangle that contains the point, and
we have I0 = 1+med′

3 see Figure 1.
For the space HSV, the saturation is given by

1 − min
max = ρ

max and the luminance component is given
by the max. The hue is the same as that for the HSL system;
in the three cases HSL, HSI and HSV, the hue is constant
for the points on each chromatic triangle. Even tough a
geometrically uniform space (HSV range space is a cylinder)
and the possible values of the pair (max, ρ

max ) are those in
[0,1]2, in this square, the ”lines of constant ρ” are segments
of a hyperbola connecting the points (ρ,1) and (1,ρ). Each
of these hyperbolas intersect the line s = max at the value
max =

√
ρ; thus, for values of ρ close to 0, the distance

from the origin of the square to the point of intersection
grows rather abruptly with ρ . For small ρ , we are near the
achromatic line, and we have a sharp decrease of saturation
from 1 towards 0, as the max moves away from zero.

 

Figure 2: Above, Luminance-Saturation triangular slice ∆ (same
for each hue angle) of ρµ colour space (by spinning the triangle
across the base of the triangle, a double cone results); values of
corresponding HSV’s saturation σ are indicated. Below, images of
important subsets of the RGB cube.

To avoid the discontinuity issues that arise from the nor-
malization of the saturation by the luminance, we simply use
the space with components η , ρ and µ; see Figure 2. Each
chromatic triangle of the RGB cube maps in a bijective fash-
ion to the ρµ-triangle. Points on the chromatic hexagon get
mapped to (µ,ρ) = (0.5,1). The achromatic line is mapped
to the base of the triangle. Points on the faces of the dark
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(resp. light) corner get mapped to the left (resp. right) edge of
the triangle. The ρµ-triangle is subdivided as shown in Fig
2, into four subtriangles, called Highly Chromatic (labeled
Σ), Moderately Chromatic (labeled σ ), Light (labeled Λ) and
Dark (Labeled λ ). In Section 3.2, the labels of the regions
are ordered according to their resulting relative weights.

2.3 Runge ηκλ space
We propose as well a space that separately codes hue, colour-
fulness and luminance; it is, geometrically, a solid 3-ball and
is named after Otto Runge (1777 - 1810). Initially, shift the
cube so that the central point (intermediate gray) ends up at
the origin, then, with center the origin, radially contract the
cube to a ball of radius 1/2, finally, rotate the ball so that the
achromatic diameter points upwards. The colour attributes
that are made explicit by using spherical coordinates r,θ ,φ
on the resulting Runge ball are those of hue (η = θ ), colour-
fulness (κ = 1− γ , where γ = 1− 2r is the grayness) and
lightness (λ = π−φ

π
). One has θ ∈ [0,2π) and λ ,γ,κ ∈ [0,1].

Thus we get a tridimensional ball, centered at the origin and
with the achromatic axis points vertically upwards. Power
laws can be exploited for lightness and grayness correction,
while hue correction requires the use of circular tools; see
[4].

2.3.1 Matlab Program Code
Matlab code for the routines that convert rectangular RGB
coordinates to Runge’s spherical rθϕ coordinates, and back,
are given below.

function[A] = RGB2RUNGE(v)
M= [.5+.5/sqrt(3), -.5+.5/sqrt(3), -1/sqrt(3);
-.5+.5/sqrt(3), 0.5+.5/sqrt(3), -1/sqrt(3);
1/sqrt(3),1/sqrt(3),1/sqrt(3)];

x=[v(1)-0.5, v(2)-0.5, v(3)-0.5 ];
if x(1)==0 & x(2)==0 & x(3)==0

y=x;
else

xx=[abs(x(1)), abs(x(2)), abs(x(3))];
k=max(xx)/sqrt(x(1)ˆ2+x(2)ˆ2+x(3)ˆ2);
y=k*x;
z= (M*y’)’;
w(1)= sqrt(z(1)ˆ2+z(2)ˆ2+z(3)ˆ2); %r
w(2)= angle(z(1)+ i*z(2) ); %teta
w(3)=
angle(z(3) + i*sqrt(z(1)ˆ2+z(2)ˆ2));

end
A=w;

function[A] = RUNGE2RGB(w)
M= [.5+.5/sqrt(3), -.5+.5/sqrt(3), -1/sqrt(3);
-.5+.5/sqrt(3), 0.5+.5/sqrt(3), -1/sqrt(3);
1/sqrt(3),1/sqrt(3),1/sqrt(3)];

z(3)= w(1)*cos(w(3)); %r cos fi
z(1)= (w(1)*sin(w(3)))*cos(w(2));
z(2)= (w(1)*sin(w(3)))*sin(w(2)); %
y= (M’*z’)’;
if y(1)==0 & y(2)==0 & y(3)==0

x=y;
else

yy=[abs(y(1)), abs(y(2)), abs(y(3))];
k=
sqrt(y(1)ˆ2 + y(2)ˆ2 + y(3)ˆ2)/max(yy);
x=k*y;
color= [x(1)+.5, x(2)+.5, x(3)+.5];

end
A= color;

To illustrate the use of Runge Colour Space we imple-
ment a hue circular shift and power-law corrections of gray-
ness and lightness. We modify the grayness component γ to

γ p, the lightness component component λ to λ q while the
hue contrast of the image is locally enhanced using the for-
mula h0← h0 +α(h0− h̄) where h0 is the hue of the central
pixel of the window, h̄ is a circular location measure (e.g.
the circular mean or the circular median [4]) of the hues in
the window and α is a control parameter; the ordering of
the corrections is immaterial. For example, consider the ap-
plication of this tool, using a window of 5× 5 (image is of
size 614×436) and control parameters p = 1.2, q = 1.1 and
α = 1.5, as shown in Figure 3.

Figure 3: Above, original image Grotta. Below, colour modification
with θ−0.2, γ1.2, λ 1.1, and hue contrast enhancement with α = 1.5
(below).

3. IMAGE CHARACTERIZATION

We consider three main types of characterization. Location
versus dispersion scatter plots along each of the dimensions
of hue, saturation and luminance with corresponding word
descriptors; pixelwise distributions of saturation versus lu-
minance in ηρµ colour space with corresponding word de-
scriptors, and circular histograms where the corresponding
entropy measures the uniformity of the histogram. We base
our discussion on the set of images shown in Figure 4; the
first four images are of a better quality than the last four.

3.1 Location-Dispersion in ηρµ space
We consider here the amount of local (i.e. on the basis of
a moving window) contrast (or dispersion) that is present at
each level (location), for each of the three components of lu-
minance, saturation and hue; we work in ηρµ space. As
shown elsewhere [5], when the location is measured with
the midrange and the dispersion with the range, the location-
dispersion pair lives in a triangle, which we further subdivide
into four subtriangles: A, up or high dispersion; B, left or
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Figure 4: Set of images considered: Mercado1, Venezia1, Mer-
cado2, Gabriela (photo by Nary Kim), Grotta, Ababoles, Venezia2
and Window.

low location; C, right or high location and, D, center or inter-
mediate. (This applies for the dimensions of luminance and
saturation but not for the hue dimension, see below.)

Along the luminance dimension, we have the distribu-
tions shown in Figure 5, to which the data in Table 1 cor-
respond. For the location-dispersion characterization in the

Table 1: Location-Dispersion Characterization for Lumi-
nance, in ηρµ space

Image A B C D word
mercado1 3.58 59.11 22.11 15.17 BCDA
venezia1 1.68 30.24 27.57 40.48 DBCA
mercado2 3.08 77.52 14.14 5.24 BCDA
gabriela 3.10 48.03 18.11 30.75 BDCA
grotta 0.06 45.87 29.75 24.31 BCDA

ababoles 17.78 65.11 14.67 2.42 BACD
venezia2 0.83 66.92 18.60 13.64 BCDA
window 7.28 86.12 2.89 3.68 BADC

dimension of saturation, we have the data shown in table 2,
where the percentages of occupancy of the subtriangles A,
B, C, and D is given. Images with the saturation entirely in
the A (e.g. images Gabriela and Venezia1) subtriangle have
a visually interestingly smooth characteristic. In this sense,
images Venezia2 and Ababoles are rough.

Now, consider the local variation (circular dispersion) of
hue as a function of local hue. The local hue is measured with

Table 2: Location-Dispersion Characterization for Satura-
tion, in ηρµ space

Image A B C D word
mercado1 0.03 96.25 3.39 0.30 BCDA
venezia1 0 99.98 0.01 0 BCD’A’
mercado2 0.61 97.00 2.16 0.20 BCAD
gabriela 0 100 0 0 BC’D’A’
grotta 0 99.68 0.31 0 BCD’A’

ababoles 1.59 87.53 9.99 0.87 BCAD
venezia2 0.03 82.01 9.96 7.98 BCDA
window 0 99.29 0.70 0 BCD’A’

Figure 5: Location-Dispersion plots for luminance: Mercado1,
Venezia1, Mercado2 and Gabriela (above), and, Grotta, Ababoles,
Venezia2 and Window (below).

the circular mean while the local dispersion is measured with
a circular range by measuring first the circle gap and then the
circular range is given by 2π−gap; for more details, see [4].
In Figure 6, a 5×5 window is used; as the window size is in-
creased, the width of the clusters decreases. The occurrence
of clusters at certain hues may suggest a hue shift, as a colour
correction technique, but this depends on the specific image
under consideration.

Figure 6: Location-Dispersion plots corresponding to the hue com-
ponent; window = 5×5. Above: Mercado1, Venezia1, Mercado2,
Gabriela; below: Grotta, Ababoles, Venezia2 and Window. The
horizontal hue axis should be interpreted as circular. (The plot ex-
ists on a cylinder.)

3.2 Pixelwise saturation vs. luminance characterization
The triangular shape of the luminance-saturation subspace of
ρµ double-cone space indicates that the saturation must have
small values for luminance values near 0 and near 1 and that
full saturation is only possible at medium luminance; this
agrees with the fact that, in natural scenes and under pho-
topic conditions, very bright and very dark colours tend to
look desaturated. We have found that natural images tend
to have a unique word descriptor, namely λσΛΣ (a major-
ity of dark pixels followed by a second majority of lowly
chromatic pixels, followed by a minority percentage of light
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pixels, followed by a minority of highly chromatic pixels.)
In fact, corresponding to the images in Figure 4 we have, re-
spectively, the luminance-saturation word descriptors λσΛΣ,
λσΛΣ, λσΛΣ, λΛσΣ′, σλΛΣ, λσΛΣ, λσΣΛ and λσΛΣ;
this points out to a preponderance of low values of satura-
tion followed by one of intermediate values of both saturation
and luminance. To make the descriptor more informative the
horizontal line should perhaps be moved down. Observe the
distributions shown in Figure 7.

Figure 7: Pixelwise distribution of saturation as a function of lumi-
nance, in ρµ space, for the images Mercado1, Venezia1, Mercado2
and Gabriela (above), Grotta, Ababoles, Venezia2 and Window (be-
low). A typical code is λσΛΣ.

3.3 Circular histograms of hue
After grouping the pixel hues into 8 groups labeled ry
(reddish oranges), yr (yellowish oranges), yg (yellowish
cetrines), gy(greenish cetrines), gb (greenish cyans), bg
(bluish cyans), br (bluish purples) and rb (reddish purples),
we get an 8-bin circular hue histogram for each image, as
shown in Figure 8. In addition, we call pixels with chro-
maticities yr and ry, warm while those in with chromaticities
gb and bg, cool; also, we call pixels with chromaticities yg
and gy sour and those with chromaticities br and rb sweet;
see Table 3. To measure the degree of uniformity of the hue
histograms, which in turn tells us how variegated the images
are, we normalize by the number of pixels and compute the
0-1 entropy given by the formula − 1

2.0794 ∑ piln(pi); see Ta-
ble 3. An entropy below 0.5 is evidence of a monochromatic
(prevalence of one of the groups over the others) image.

Table 3: Hue Characterization
Image Degree of balance Dominant chromaticities

mercado 1 0.8633 balanced
venezia1 0.7113 cool and warm
mercado2 0.8451 warm and sour
gabriela 0.6987 warm and sweet
grotta 0.3564 warm and sweet

ababoles 0.3869 warm and sour
venezia2 0.3257 warm
window 0.4611 warm

4. CONCLUSION

We have introduced a double-cone colour space ρµ that al-
lows for a more accurate chromatic characterization of im-
ages by leaving the saturation unnormalized, and a spherical
Runge space of hue, colourfulness and lightness ηκλ , that is
perceptually homogeneous and is suitable for image colour
modification. We have presented set of characterizations of

Figure 8: Hue histograms corresponding to images in Figure 4

colour images in terms of the distributions of dispersion ver-
sus location and also measures of colour variegation such as
the entropy of the circular hue histogram. The corrector of
an image should take into consideration both the image and
the characterizations in order to apply appropriate correction
tools; e.g. neither a low saturation nor a low hue entropy are
necessarily indicators of low image quality. Thus, automatic
correction requires homogeneous databases of images.
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