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ABSTRACT

T-normalization is a widely used method for normalizing the
scores in a speaker verification system in order to reduce
undesirable variation arising from acoustically mismatched
conditions. In this paper we propose a particular form of T-
normalization using iterative normalization of confusion ma-
trix generated from impostor trials for each client speaker.
The normalized confusion matrix along with a simple dis-
tance metric is then used to select a cohort set based on
similarity modeling for each client speaker. The normal-
ization statistics thus computed from this cohort set is used
for both impostor and claimant scoring. Experiments on
the NIST 2004 SRE data demonstrate reasonable improve-
ments in terms of the equal error rate(EER) computed from
the detection error trade(DET) curves, when compared to the
baseline GMM-UBM schemes. Encouraging improvements
in terms of DCF over the general T-normalization schemes
are also illustrated for 8C-1C and 1C-1C conversation condi-
tions.

1. INTRODUCTION

Speaker verification [1], is a task of identifying whether an
unknown speech utterance was uttered by a claimed speaker
or not. The general approach used in the speaker verifica-
tion system is to apply a likelihood ratio test to an input ut-
terance to determine if the test claimed speaker is accepted
or rejected. The likelihood ratio essentially measures how
much better claimant model scores for the test utterances
compared to some non claimant model. The decision thresh-
old is then set to adjust the trade off between rejecting true
claimant utterances(false rejection errors) and accepting non
claimant utterances(false acceptance errors). An important
issue in the statistical approaches to speaker verification is
that of score normalization which is used to reduce envi-
ronmental and variability effects on the verification decision.
Hence finding an optimal strategy for classification and score
normalization is a significant problem in speaker verification
systems. Both offline [2], and on line [3], methods have been
used earlier for impostor cohort set selection for further use
in the T-normalization process. In this paper we propose an
approach which uses normalized confusion matrices for each
claimant speaker which is herein called the client speaker.
For each client speaker a normalized confusion matrix is gen-
erated using the iterative proportional fitting (IPF) procedure
[4], in multiple passes. A simple distance metric [5], is then
applied on the confusion matrix at each pass to find the most
similar set of impostors to the client speaker. Once the most
similar set of speakers are found, the initial (conventional)
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cohort model set is pruned based on the selected number
of impostor speakers. Only these set of cohort models are
then used in computing the statistics for T-normalization of
claimant and impostor scores during the final testing phase.
We first briefly discuss the issue of score normalization in
speaker verification. We then propose the overview of the
new approach of selecting the cohort set to be used in the
final T-normalization process. This is followed by a discus-
sion on the use of IPF based normalized confusion matrices
for each client speaker to come up with the pruned cohort
set. Speaker verification experiments conducted on the NIST
2004 SRE data [6], are then discussed. Reasonable improve-
ments over the conventional GMM-UBM modeling and the
existing T-normalization methods are also illustrated as DET
curves [7]. The results are further substantiated using equal
error rate (EER) and decision cost functions (DCF) on the
8C-1C and 1C-1C conversation sides of the NIST 2004 SRE
corpus. A Bayesian interpretation of the proposed approach
is also described in Appendix I.

2. SCORE NORMALIZATION TECHNIQUES

The GMM-UBM system [1], is a likelihood-ratio detector in
which the likelihood ratio is computed for an unknown test
utterance Y. between a speaker-independent acoustic distri-
bution (UBM) and a speaker-dependent acoustic distribution
i.e client (claimed) speaker S. The general block diagram of
speaker verification system illustrating score normalization
is shown in figurel. Score normalization technique is used to
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Figure 1: Block diagram of a speaker verification system il-
lustrating score normalization.

normalize the log likelihood ratio score for a test utterance Y
and target model S as

LLR(Ytest ) S) - ,LL
(o2

LLR(Ytest 5 S)norm = (1)
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Figure 2: Block diagram illustrating the proposed client-wise cohort selection and normalization (CWCS-NORM) method.

where (u) is the mean and (o) is the standard deviation as
computed from the cohort models. Different score normal-
ization techniques can be performed either with respect to the
speaker model or with respect to the test data. Techniques
like Z-NORM and T-NORM [2] are widely used in this con-
text. While T-norm sets use some broad speaker-specific in-
formation, data driven T-norm selection approaches have re-
ceived little attention. We therefore propose an approach to
cohort set selection for score normalization which is essen-
tially data driven albeit by the use of normalized confusion
matrix for each speaker. The discussion on the development
of this approach for client-wise cohort set selection for T-
normalization ensues in the following Section.

3. ON LINE CLIENT-WISE COHORT SET
SELECTION USING NORMALIZED CONFUSION
MATRICES

In this Section, we present an overview of the proposed tech-
nique for the on line selection of the cohort set for each client
speaker. In this approach we select different set of cohort
models for each client speaker model. Note that we are us-
ing the term client model in place of claimed or hypothesized
model as is generally used in speaker verification terminol-
ogy. If the cohort models are chosen during the test phase
(on line), the selected speakers will be more meaningfully
similar depending on the test utterance. This leads to a more
efficient score normalization when compared to conventional
offline T-norm score normalization using a fixed set of im-
postor models for all test utterances. The block diagram il-
lustrating the selection of cohort models using the proposed
approach is shown in Figure 2. In order to select the best
cohort models for each client speaker we start with the im-
postor trials of each client speaker and test it against all the
cohort models. A confusion matrix is generated and normal-
ized using the iterative proportional fitting procedure (IPF)
[4], which is described in detail in the succeeding Section. A
simple distance metric is used in multiple passes to select the
most closest impostor cohort set until convergence in terms
of a adaptive threshold is met. After the selection, each client
model will have its own set of cohort models for each target
speaker. This on line cohort set selection method for each
client speaker leads to better system performance compared

to conventional cohort model selection which do not perform
any similarity modeling and use the same cohort set for all
test utterances.

3.1 Normalizing Confusion Matrices via iterative pro-
portional fitting

In this Section we describe the use of confusion matrices for
selecting the most similar cohort set of models each client
speaker. A confusion matrix lists the values for known types
of the reference data in the columns and for the classified
data in the rows. The columns indicate actual data of the
reference classes while rows indicate the classifications that
result from using a specific classifier. The main diagonal of
the matrix lists the correctly classified data. The Tablel, rep-
resents a 3x3 confusion matrix for the classes A,B, and C. In
case of finding the best cohort set for each target speaker, the
confusion matrix is the client models versus the cohort mod-
els. From the tablel we observe that the cell entries need to

A|B

C
A6 |2]1
B|1|7]1
Cl|2]2]|5

Table 1: An example of a 3x3 confusion matrix.

be converted to probability values to make it more convenient
to compare each cell value irrespective of the number of test
examples used to derive the confusion matrix. The process
of normalization will balance each cell value in the matrix by
its corresponding row and column. This will ensure that both
the cross classification errors and the row-column ambiguity
are taken care of unlike conventional approaches. Iterative
Proportional Fitting (IPF) [4] algorithm, can be used to nor-
malize the confusion matrices, by estimating cell probabili-
ties in a confusion matrix by forcing each row and column
sum to one. Suppose there are n;; > 0 observations in a con-
fusion matrix (r x ¢), where

Z Y nij=n. ()
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The cell probabilities are estimated by minimizing the fol-
lowing criterion

22 (nij — npij)* /nij 3)

i=1j=1

assuming the following fixed marginal totals.
¢
L= Zpij(iZI,Z,....,r) 4)

P+j= ZPU = C) 5)

where p;y =1 and p,; = 1. An involved discussion on the
IPF procedure can be found in [4]. To illustrate IPF, we
consider an example normalized confusion matrix of three
classes (A,B, and C) as shown in Table 2. From Table 2 it

A B C
A ] 0.6771 | 0.1314 | 0.1925
B | 0.1685 | 0.6875 | 0.1439
C | 0.1554 | 0.1811 | 0.6635

Table 2: An example normalized confusion matrix computed
using IPF.

can be noted that IPF alleviates the differences in test exam-
ples and also makes the off diagonal values more indicative
of the cross classification errors.

3.2 Cohort set selection using a distance metric

In order to compute the cohort set from normalized confu-
sion matrices a distance metric that quantifies the similarity
in terms of the cell probabilities values is required. The L1
distance measure [5] is used in our work. The L1 distance
measure totals the absolute differences of corresponding co-
ordinate values between two vectors (rows), then takes a pair
wise similarity between all pairs of classes to prepare a upper
triangular matrix, called the incidence matrix.

C
Ll;;= 2 abs(ay —ajr);i # Js
k=1

Ll;;=05i>j

where 1 <i<r1 < j<cand Ll;; are the elements in in-
cidence matrix L1. L1;; = 0: i > j to get a upper triangu-
lar incidence matrix. The incidence matrix for L1 measure
using the normalized confusion matrix in Table 2 is. The

0.0000 | 1.1124 | 1.0415
0.0000 | 0.0000 | 1.0392
0.0000 | 0.0000 | 0.0000

Table 3: Incidence matrix corresponding to the normalized
confusion matrix in Table 2 using the L1 distance measure.

confusion matrices in conjunction with the distance metric is
used in multiple passes if necessary to find a cohort set for
each client speaker. Fixing the small fractional probability

threshold is completely data driven and is based on a conver-
gence measure in terms of the cell probability values. It must
be noted here that the row wise candidates of the confusion
matrix are the claimed identities. Hence the possibility of
pruning one closest speaker in the selection of the cohort set
is possible. However possiblitiy of such errors are larger in
other on line cohort set selection [3], techniques.

4. PERFORMANCE EVALUATION

The baseline GMM-UBM system used in the speaker ver-
ification experiments has already been illustrated in Figure
1 A Gaussian mixture model (GMM) is trained using pool-
ing data from many different speakers to create a univer-
sal background model(UBM). The target speaker models are
trained by maximum a posteriori(MAP) adaptation of the
background model to the training data. For a given test
sample, the accumulated and averaged log likelihood ratio
for the target model and the background model is used as a
score. The features used for the experiments in this system
are the thirteen dimensional Mel frequency cepstral coeffi-
cients (MFCCs), without the zeroth order coefficient, and ap-
pended with velocity and acceleration coefficient’s, resulting
in thirty nine dimensional feature vectors. The features are
modeled by 512 mixture component GMMs. Only the GMM
means are adapted to the observed data. The cohort models
are also trained in a similar manner as the target models for
a set of impostor models. In following Section, we describe
the NIST 2002 SRE one-speaker detection task data corpus
and NIST 2004 SRE Mixer data corpus used to carry out the
speaker verification experiments.

4.1 Organization of the NIST 2002 and 2004 data sets
for performance evaluation

Two data sets are used in this work. The first data set corre-
sponds to the one-speaker limited data detection task of the
NIST SRE 2002. This database consists of 191 female and
139 male speakers. The data is recorded using the Switch-
board methodology and consists of excerpts from cellular
telephone conversations. The second evaluation database
used is the NIST 2004 SRE Mixture data corpus. Of the
many conditions evaluated there [6], we will focus on the 8C-
1C and 1C-1C conversation side conditions. In these condi-
tions the test segments contained a whole speaker conversa-
tion side, and the model training material consisted of either
one conversation side (of approximately 5 minutes) or 8 con-
versation sides, respectively. The data is part of the MIXER
data corpus. The evaluation contains different languages and
includes many trials for which the training and testing ma-
terial consists of different languages. Also, there is a great
variation in handset and channel type within the database.
NIST 2002 SRE data was used for training the background
models. For evaluation purposes NIST SRE 2004 data has
been used. The SRE 2004 data was split as per gender in
two separate groups of speakers. The selection of speak-
ers was random. The first split was used for computing T-
normalization statistics. The second split was used for client
model training and also for testing. The UBM model was
trained from the female subset of the NIST 2002 SRE one-
speaker limited data set. It is modeled by a GMM with 512
mixtures. Ten iterations were sufficient for parameter con-
vergence. T-normalization models were trained using one
set of NIST 2004 female SRE data set. The T-normalization
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models are adapted using utterances from T-normalization
speakers in a similar manner as is done with the client mod-
els. In our training and testing phases the NIST 2004 SRE
1C-1C and 8C-1C training/testing female conversation side
condition set served as the data set. The client models were
built by doing MAP adaptation on the UBM.

4.2 Experimental Results

Experiments on the NIST 2004 SRE data for speaker verifi-
cation are conducted using four methods

e The GMM-UBM method (GMM-UBM) : In this method
the conventional GMM-UBM method of speaker verifi-
cation is used.

e The client-wise hypothesized set method (CWHS) : In
this method we replace the hypothesized speaker model
by a client-wise hypothesized (CWHS) model. This
CWHS model is trained using the most similar speak-
ers as computed from the normalized confusion matrix
method as described earlier in Section 3.

e The CWHS followed by T-normalization method (T-
NORM) : This method follows the CWHS approach fol-
lowed by the T-normalization method.

e The client-wise cohort set selection followed by T-
normalization method (CWCS-NORM) : In this method
we use the aforementioned client-wise cohort set selec-
tion method followed by T-normalization. Note that a
common set cohort set is not used for score normalization
(T-NORM) as is done in conventional T-normalization
schemes.

The experimental results obtained with the four methods are
given as detection error trade off (DET) curves and also il-
lustrated in terms of the decision cost function (DCF). The
detection error trade-off (DET) plots for the NIST 2004 SRE
for the 8-conversation side training with 1 conversation side
test (8C-1C) condition is shown in Figure 3. Similarly the

8C Training / 1C Testing
T T T T T
— GMM-UBM
—— CWHSM
T-NORM
— CWCS T-NOEM |-

Miss probability (in %6)

1 2 5 10 20 40
False Alarm probability (in %)

Figure 3: DET plots for the NIST speaker-recognition eval-
uations for the 8-conversation-side training condition with 1
conversation side test for all the four methods used for com-
parison.
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Figure 4: DET plot for the NIST speaker-recognition eval-
uations for the 1-conversation-side training condition with 1
conversation side test.

1-conversation side test(1C-1C) condition is shown in Fig-
ure 4. From Figures 3 and 4, we observe from the DET
curves that the proposed CWCS-NORM method shows rea-
sonable improvements in both the 8C-1C and 1C-1C con-
ditions. In Figures 5 and figure6, the corresponding equal
error rate (EER) and decision cost function (DCF) values for
all the four methods under consideration are illustrated. It

EQUAL ERROR RATE

2] B GMM-UBM [T
B CWHSM
------------- [r-NorMm

I CWCS T-NORM

EER

1c/1c 8C/1C

Figure 5: Bar chart of the EER for 1C/1C and 8C/1C condi-
tions on the NIST 2004 SRE data.

can be observed that the proposed CWCS-NORM method
gives consistently reasonable improvements over other meth-
ods in terms of both EER and the DCF. It can also be noted
that the conventional T-NORM method displays characteris-
tic improvement in the low false-alarm region and nominal
gain at the EER point over CWHS. In contrast, the CWCS-
NORM method shows improvement across the entire false
alarm region when compared with all the other methods.
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Figure 6: Bar chart of the DCF for 1C/1C and 8C/1C condi-
tions on the NIST 2004 SRE data.

5. CONCLUSION

In this paper a new approach to cohort model selection de-
pending on the claimed or client speaker is presented. The
advantage of this approach is that the same set of cohort mod-
els are not used for all test utterances. This approach is also
on line i.e, the cohort set is selected based on the test utter-
ance. The primary contribution of this work is also a new
method of similarity modeling via the iterative use of nor-
malized confusion matrices. The experimental results on the
NIST 2004 SRE data are encouraging. A Bayesian inter-
pretation of the approach is also presented in Appendix I, to
illustrate the motivation for the use of confusion matrices in a
a multi pass fashion. We are currently working on improving
the real time performance of the proposed approach.

6. APPENDIXI:
BAYESIAN INTERPRETATION OF THE PROPOSED
SIMILARITY MODELING FOR COHORT SET
SELECTION

Similarity modeling can be used to select the best cohort
set for each client speaker involves selecting the the co-
hort models that are closest to the test utterance in ques-
tion. This can be viewed as a classification problem. Us-
ing a Bayesian approach for this problem one can proceed
as follows. Let w;,l =1,..,N be the N classes in the clas-
sification problem. Assuming C,,m = 1,..,L, denote the
classes in the initial classification pass where L < N, the ini-
tial classes C,, form a partition of the original classes wy, as
Cin = [Om1, W2, .., Opy ) and the classes C,, are mutually dis-
joint. A diagrammatic illustration of this is shown in Figure
7. When a Bayesian classifier is used, we start by computing
class likelihood given the feature vector X as

L
P(wy | X) = 2 (@1,Cn | X) (6)
Applying Bayes rule on Equation 6 reduces it to
L P(X | Cn)P(C,
P %)= 3, PELPG) (piy ) )

P(X)

m=1

Figure 7: Illustration of the similarity modeling approach for
cohort set selection.

Further assuming that w; € C;,

Pl ={ , %o m2i

p,p>0;, m=i

This assumption also implies that the first pass has to be de-
signed to be robust. With this assumption

P(X\C )P(C;)

P(oy [ X) poy (Plor | G, X)) ®)
_ PX|G)P(G) P(X|wp.Ci)P(ay|Ci) 9)
P(X) P(X|G;)

Note that we have made successive use of Bayes rule and as-
sumption that once the classification decision on C; is made,
the finer classification decides on w;. Further once C; is de-
cided during the first pass, the finer classification on w; re-
quires computing

P(X | @, Ci)P(ay | Ci)
This ensures that if the first pass classification is assumed to

be robust, the next pass has the advantage of working with
smaller and manageable class sizes.

(10)
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