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ABSTRACT 
This paper introduces a spectrum sensing approach that 
deploys nonuniform sampling and Digital Alias-free Signal 
Processing (DASP) to reliably sense the spectrum using 
sampling rates well below the ones required for uniform-
sampling-based-DSP. The adopted method is based on spec-
tral analysis of the incoming signal from a finite set of its 
nonuniformly distributed samples that are contaminated 
with noise. Reliability guidelines are provided to ensure the 
credibility of the sensing technique where the sampling rates 
can be arbitrary low. The presented analytical results are 
illustrated by a numerical example.   

1. INTRODUCTION 

Spectrum sensing involves detecting meaningful activities 
within a predefined frequency band(s) such as an ongoing 
transmission or occurrence of some event. Emerging Cogni-
tive Radio (CR) technology has initiated intensive research 
into reliable and efficient sensing techniques e.g.[1-3]. In the 
case of sensing multiple disjoint spectral bands stretching 
over wide frequency ranges and with no prior knowledge on 
the characteristics of the conveyed transmissions, methods 
that involve spectral analysis or estimation are viewed as an 
appropriate/efficient candidates for such a task [1]. In this 
paper, the adopted wide-multiband sensing technique relies 
on estimating the spectrum of the received signal using a 
periodogram-type spectral analysis tool. This approach has 
retained its popularity in recent studies e.g. [1-3].  
If no beforehand knowledge on the activity of the examined 
spectral bands is available, the sensing device uniform sam-
pling rate should exceed at least twice the total bandwidth of 
the monitored frequency ranges regardless of the spectrum 
occupancy/activity [4]. Failing to do so could result in alias-
ing and irresolvable detection problems. In this paper, we 
demonstrate that we can detect the active spectral bands by 
the suitable use of arbitrary low-rate intentional nonuniform 
sampling (randomized sampling) and appropriate processing 
of the signal – a methodology referred to as DASP. Few 
monographs e.g. [5] give an overview on the topic. Using 
low sampling rates can exploit the sensing device resources 
e.g. power more efficiently and/or avoid the deployment of 
high-cost, fast hardware capable of dealing with possibly 
very high sampling rates in the event of monitoring ultra-
wide frequency bands. 
Spectral analysis for arbitrary sampling has a long history 
e.g. Lomb periodogram [6] and several spectral estimation 

methods that use alias-free sampling schemes e.g. [7] exist. 
In this paper, the proposed approach relies on utilizing ran-
domized sampling and the processed signal is considered to 
be random. The latter assumption formulates a more general 
stochastic framework in comparison to the aforementioned 
studies. Although the earliest papers on DASP-type algo-
rithms e.g. [8] studied the problem of estimating the signal’s 
Power Spectral Density (PSD), they did not resolve the pre-
dicament of the estimator’s consistency for a finite number of 
samples. In this study, the estimation of the exact signal’s 
PSD is not the objective and an estimate of a 
smoothed/windowed PSD that permits detection of the active 
bands is sufficient. We assess the accuracy of the adopted 
estimator from a finite set of samples and take several meas-
ures e.g. tapering and estimate averaging to appropriate pe-
riodogram-type analysis to the handled problem i.e. spectrum 
sensing and not PSD estimation.  
The primary purpose of this paper is to explore the possible 
use of randomized sampling and DASP methodology for 
spectrum sensing and highlight its benefits over conventional 
uniform sampling. We provide guidelines to ensure sensing 
reliability  in terms of the detector’s performance; namely 
Receiver’s Operating Characteristics (ROC); rather than a 
general performance metric as in [9]. Here we do not attempt 
to resolve implementation issues related to a particular sys-
tem and its limitation(s). Randomized sampling scheme, 
named Total Random Sampling (TRS) is used due to its sim-
ple description and mathematical analysis.  
The rest of the paper is organized as follows. In Section 2 
we state the tackled problem and outline the adopted sensing 
method. In Sections 3 and 4 we analyze the deployed spec-
trum estimator and provide its reliability conditions respec-
tively. A numerical example is given in Section 5 to demon-
strate the endorsed sensing technique and then conclusions 
are drawn in Section 6. 

2. WIDEBAND SPECTRUM SENSING 
 

2.1 Problem Formulation 
Consider a communication system operating over L  narrow 
non-overlapping spectral bands, each of them with band-
width CB . A device sensing the system’s spectral activity 
needs to monitor a total single-sided bandwidth of CB LB= . 
At a particular time-instant and in a certain geographic re-
gion, the maximum number of simultaneously active 
bands/channels and their joint bandwidth are denoted by AL  
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and A A CB L B=  respectively. The central frequencies of all 
system channels are assumed to be known and the positions 
of the active ones are unknown beforehand. The main objec-
tive is to devise a method that is capable of scanning the 
monitored bandwidth B  and identifying which bands or 
channels are active; if any. The algorithm should operate at 
sampling rates significantly less than 2B  which is the theo-
retical minimum rate (not always achievable) that could be 
used when bandpass sampling and classical DSP are de-
ployed [4]. Here we consider the scenarios where all the ac-
tive bands are of similar power levels and the signal propa-
gates via an Additive White Gaussian Noise (AWGN) chan-
nel where 2

0σ  denotes the noise variance.  
 

2.2 Adopted Sensing Technique 
The sensing technique adopted in this paper relies on assess-
ing the magnitude of the estimated spectrum and not using 
the spectral analysis to measure the signal’s energy as in [1, 
2]. The detection procedure consists of three steps: 1) com-
pute M  number of frequency points across B , 2) find spec-
tral peaks and 3) compare those peaks with a threshold. 
Hence, the tackled sensing problem can be formulated as a 
conventional binary detection problem represented by: 
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where  ˆ ( )eX f  is the estimated spectrum whilst hypothesizes 

0,kH  and 1,kH  represents the absence and  the presence of an 
activity in band k  respectively. The kf frequencies are the 
assessed spectral points where using the minimum number of 
those points is preferred - one per channel, taken at its central 
frequency i.e. M L= . The use of nonuniform sampling in-
troduces a form of aliasing to the signal’s spectrum com-
monly referred to by smeared aliasing; a broadband-white-
noise-like component present at all frequencies [5]. Thus, the 
lack of an activity in band k  does not imply that noise is the 
only contributor to the estimated spectrum within.  

3. SPECTRUM ESTIMATOR 

The processed signal is assumed to be contaminated with 
zero mean AWGN, hence ( ) ( ) ( )n n ny t x t n t= +  is the sum of 
the signal samples ( )nx t  and the added noise ( )nn t . The 
sampling instants nt ’s of the deployed TRS scheme are 
independent identically distributed random variables whose 
probability distribution functions are given by: 0( ) 1/p t T=  
for [ ]0 0 0,t t t T∈ +  and zero elsewhere. This is an alias-free 
randomized sampling scheme that was studied in [7]. We 
perform spectral analysis via endorsing a periodogram-type 
estimator given by:         
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where μ  is the energy of the utilized tapering/windowing 

function 0 0

0
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= ∫ , N is the number of the signal 

sample points nt ’s and 0T  is the length of the signal analy-
sis time window. Windowing is introduced to minimize 
leakage in the conducted spectral analysis. The sampling 
instants in (2) are placed inside the time window 0 0 0[ , ]t t T+ .  

The processed signal is assumed to be a bandlimited, zero 
mean and Wide Sense Stationary (WSS). Although commu-
nication signals are known to be of a cyclostationary nature, 
phase randomization is a widely adopted technique to sta-
tionarize the process  whenever its cyclic frequency is not of 
an interest [10]. In the following subsection we show that 
(2) is a frequency representation of the incoming signal that 
is suitable for the sensing task. 

 

3.1 Target Frequency Representation 
Given that the components of the summation (2) are inde-
pendent with respect to the sample points, it can be shown 
that the expectation of the estimator i.e. [ ]( ) ( )eC f E X f=  is 
given by: 

 { } 22 2
0

1( ) ( ) ( )
( 1) W

NC f E x t σ E X f
N α μ
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where 0/α N T=  is the average sampling rate and ( )WX f is 
the windowed Fourier Transform (FT) of ( )x t . We note that, 

2 2( ) Φ ( )* ( )W XE X f f W f⎡ ⎤ =⎣ ⎦ , where Φ ( )X f  is the PSD of 

( )x t , ( )W f  is the FT of the windowing function and “*” 
denotes the convolution operation.  As a result, 

     { } 22 2
0

1( ) ( ) Φ ( )* ( )
( 1) X

NC f E x t σ f W f
N α μ

⎡ ⎤= + +⎣ ⎦−
    (4) 

For a relatively low α  and finite 0T , the bias of the estimator 
in terms of the windowed signal PSD i.e. the first term in (3) 
is constant and frequency independent. Assuming that the 
signal analysis period 0T  is long enough, the tapered PSD 
forms an identifiable feature of the processed signal. Conse-
quently, ( )C f comprises of a detectable spectral component 

i.e. 2Φ ( )* ( ) /X f W f μ plus a constant offset regardless of the 
sampling rate. Therefore, the adopted estimator poses as a 
legitimate tool to sense the activity of the system bands. 
The use of a long analysis window 0T  results in a high reso-
lution spectral analysis. Hence, maintaining low spectrum 
resolution by utilizing short signal time window minimizes 
the number of needed frequency points in the detection proc-
ess which leads to savings on computations; one per exam-
ined spectral band. As discussed in [9], 0 1/ CT B≥  offers a 
reasonable guideline for choosing the signal analysis win-
dow. It is noted that the use of a relatively short signal analy-
sis window further justifies the stationarity assumption 
(pseudo-stationarity) of a processed communication signal. 
 

3.2 Estimator’s Accuracy 
Although ( )eX f  is an unbiased estimator of ( )C f , it will be 
an adequate tool for assessing the channels’ activity only if 
the difference Δ( ) ( ) ( )ef C f X f= −  is small. According to 
Chebychev’s inequality [10]; which states that: 
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[ ]{ } 2Pr 1/XX E X εσ ε− ≥ ≤  where Xσ is the standard devia-
tion of a random variable X  and 0ε > ; the Δ( )f  can be 
controlled by the suitable reduction of the estimator’s vari-
ance. In this subsection we present an expression for the 
variance of ( )eX f . First we define:  
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where ( )WSR f and ( )WSI f represent the real and imaginary 
parts of ( )WSX f respectively. Each of ( )WSR f  and ( )WSI f  
consist of the sum of N  statistically independent random 
variables for every f and hence according to the Central 
Limit theorem they can be assumed to have a normal distri-
bution for large N ( 20N ≥  is often perceived as sufficient in 
practice [1]). It can be shown that those two components are 
dependent, nonetheless they can be replaced with independ-
ent ones without altering ( )eX f . We can write: 

22 ( ) 2 2( ) ( ) ( ) ( )
WS WS

jθ f
WS WSX f X f e R f I f= = +� � , where ( )WSR f�  

and  ( )WSI f�  are the phase shifted uncorrelated versions of 
each of ( )WSR f  and  ( )WSI f . Using un-normalized non-
central chi-squared distribution, we arrive at:  
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where 2 ( )SP E x t⎡ ⎤= ⎣ ⎦  is the signal’s power (see [9] for further 
details). Computing the variance can be seen as complicated 
process that demands knowledge of the signal’s PSD. How-
ever, the variance calculations are presented to assess the 
reliability of detection. The sensing procedure only requires 
calculating (2). 
 

3.3 Estimate Averaging 
For an active band to be detectable, its estimated peak spec-
trum amplitude must be above a chosen threshold based on 
the desired accuracy i.e. ROC. The estimator’s accu-
racy/performance is directly related to its variance via Che-
bychev’s inequality. Inspecting ( )eσ f  given by (6)-(10), we 
note that it is nearly constant at frequencies where there is no 
activity. We denote the variance at such frequencies by ,conteσ  
which is inversely proportional to α . On the other hand, 

( )eσ f  has its highest value where the signal is present. A 
classical method to reduce the latter error is to resort to aver-

aging a number of ( )eX f  estimates from K  signal windows 
of length 0T . Therefore, α  and K can be used to minimize 
the present error level and ensure detection credibility. For 
simplicity, non-overlapping signal segments are considered 
here. They are assumed to be uncorrelated in accordance 
with the typically adopted approach in literature e.g. Bartlett 
periodogram [11]. As a result, the variance of the estimator is 
reduced by a factor of 1/ K . Consequently, the adopted sens-
ing approach relies on averaging K  number of ( )eX f  esti-
mates according to: 

1

1ˆ ( ) ( )K i
e ei

X f X f
K =

= ∑                    (11) 

4. RELIABLE SPECTRUM SENSING 

Assessing the ROC is a common technique used to evaluate 
the effectiveness of the detection procedure. In this section 
we deploy the ROC to derive the pursued guidelines. 

 

4.1 Reliability Guidelines 
According to the central limit theorem, for large number of 
averaged windows K ,  ˆ ( )eX f  is approximately normally 
distributed and can be compactly written as:  

( )2
0 0

ˆ ( ) ,eX f m σ∼ N  and ( )2
1 1

ˆ ( ) ( ), ( )e k kX f m f σ f∼ N  for 

0,kH  and 1,kH  respectively. The subscriptions of the mean 
and the variance are discarded since active channels are as-
sumed to be of same power levels. Using the detection deci-
sion described by (1), the probability of a false alarm in a 
particular channel is given by : 

     ( ) { } ( ), 1, 0, 0 0Pr /f k k kP γ H H Q γ m σ= = −⎡ ⎤⎣ ⎦       (12) 

and the probability of correct detection is: 
       { } ( ), 1, 1, 1 1( , ) Pr ( ) / ( )d k k k k k kP f γ H H Q γ m f σ f= = −⎡ ⎤⎣ ⎦    (13) 

where ( )Q z is the tail probability of a zero mean and unit 
variance normal distribution. We recall that due to nonuni-
form sampling a false alarm can be triggered by the com-
bined effect of noise and smeared aliasing; not solely noise  
as the case with classical DSP. Let 2( ) /W kE X f μ U⎡ ⎤ =⎣ ⎦ and 

for simplicity assume a rectangular window. It can be seen 
from (3) that: 

   { }2
0 0 /( 1)Sm N P σ N α= + −                (14) 

and 
1 0( )km f m U= +      (15) 

for 0,kH  and  1,kH  respectively. It is noticed from (14) that 
the component related to the power of the signal is always 
present which depicts smeared aliasing effect. Following 
similar analysis to that in [9], we arrive at :            

        ( ) 22 2
0, /( 1) /k S Nσ N P σ N α K⎡ ⎤≈ + −⎣ ⎦      (16) 

for 0,kH whilst: 

                   ( ) 22 2
1, ( ) /( 1) /k k S Nσ f N P σ N α U K⎡ ⎤≈ + − +⎣ ⎦     (17) 
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for 1,kH . We illustrate via a numerical example that the 
approximations undertaken above; including the assump-
tion on the normal distribution of (11); have insignificant 
implications on the reliability of the devised sensing tech-
nique due to the conservative nature of the analysis.  
We assumed that the active channels are of similar power 
levels. Hence the worst case scenario is considered to be 
when all active channels with total single sided bandwidth of  

AB  are adjacent since spectral leakage and overlapping is 
most severe. Utilising relation (12) and (13) , we can write: 
                ( ) ( )1 1

0 0 1 1( ) ( )f d k kQ P σ m Q P σ f m f− −+ = +           (18) 

Provided that the analysis window 0T  is chosen moderately, 
we can write: 2S AP B U≤ . Endorsing a reasonably conserva-
tive approach to the sensing problem (18) reduces to:  
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(19) 

where 2/S NSNR P σ=  and X⎡ ⎤⎢ ⎥ is the smallest integer bigger 
than X . Formula (19) gives a conservative recommendation 
on the number of needed window averages which is a func-
tion of the channel occupancy, average sampling rate and 
signal to noise ratio. It is a clear indication of the trade-off 
between the sampling rate and the number of averages 
needed in relation to achieving dependable sensing. Accord-
ing to (19), we can use arbitrary low sampling rates for the 
sensing operation at the expense of using considerably long 
signal observation window i.e. 0KT . Besides, (19) shows that 
for large SNR scenario i.e. 1SNR >> , a (1/ )O SNR estimate 
averages are needed to meet the sought detector perform-
ance. Whilst for small SNR value i.e. 1SNR << , the adopted 
sensing algorithm need a window averages of order 

2(1/ )O SNR− .  It is noted that correlated and overlapping sig-
nal windows can be easily incorporated into the analysis 
conducted above by using existing results in literature on 
variance reductions e.g. Welch periodograms [11]. 

 

4.2 Detection Threshold 
Although recommendation (19) ensures that the detection 
conditions specified by the user are met, it does not advice on 
the threshold levels to be used in the detection procedure. 
According to a system requirements i.e. ,f kP ≤ Δ  and 

,d kP ≥ A , an upper and lower bound of the threshold that 
would satisfy the sough performance can be provided. From 
(12) and (13) we can write:  

min maxγ γ γ≤ ≤              (20) 
where  
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deploying formulas (14)-(17). 

4.3 Uniform Sampling 
Uniform sampling based spectrum sensing methods that de-
ploy periodograms to detect active transmissions via assess-
ing spectral peak e.g. [3] typically demand less estimate av-
eraging compared to the proposed technique which suffers 
from smeared aliasing defect. Following similar analysis to 
that of the TRS scheme, it can be shown that the needed 
number of estimate averages for uniform sampling method(s) 
is given by: 

    ( ) ( ) ( )
21

1 1 12 A
US f d d

S

B SNRK Q P Q P Q P
f

−
− − −
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where Sf  is the uniform sampling rate. Hence comparing 
uniform sampling with the proposed approach should take 
into account the required number of averages in each case.  
Nevertheless, with uniform sampling the minimum afford-
able sampling rate is 2B (not always realisable) regardless of 
the spectral activity i.e. /AB B . Since the considered tech-
niques rely on calculating a form of DFT (or an optimised 
version whenever applicable e.g. FFT), the number of proc-
essed samples would be a critical factor in deciding the com-
putational complexity or efficiency of both the uniform and 
nonuniform sampling cases. Generally, for low spectrum 
utilisation i.e. / 1AB B << , the adopted approach in this paper 
offers substantial saving on the used sampling rates and the 
number of processed samples. This is the case in a number of 
applications such as CR networks where spectrum occupancy 
can be 15% [2] or possibly lower in certain bands. However, 
each scenario should be evaluated individually using (19) 
and (23) to assess the cost of each approach. An important 
fact is that for the proposed method extending the monitored 
bandwidth; assuming constant SNR e.g. the sampling pre-
ceded by a filter to limit the noise bandwidth/power; would 
not impose any additional requirements on the needed sam-
pling rates or estimate  averages according to (19) provided 
that the bandwidth of the concurrently active channels i.e. 

AB  does not change.  

5. SIMULATIONS 

Consider a multiband system comprising of 20 channels 
( 20L = ) that are 5 MHz each ( 5CB =  MHz). The system 
channels are located in [ ]1.25,1.35f ∈  GHz.  A Hanning 
window of width 0 0.4T = us is employed. QPSK signals 
with maximum bandwidths are transmitted over the active 
channels and with similar power levels.  A channel occu-
pancy of 10% is assumed i.e. 2AL =  and 10AB = MHz. A 
sampling rate 90α = MHz is used and the SNR is -1.25 dB. 
For 0.8dP ≥ and 0.2fP ≤ , the needed estimate averages is 

min 4K =  according to (19). In Figure 1, we show the ROC 
of the adopted method for various K values via simulations 
sweeping across a wide range of possible thresholds. Whilst, 
Figure 2 shows the dP  and fP  versus the threshold levels 
given by (20). In each of the plots 1000 independent ex-
periments are used to approximate the statistical measures. 
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Figure 1 confirms the conservative nature of the given reli-
ability conditions where the desired performance is achieved 
for minK K≥ . It is evident in Figure 2 that the thresholding 
regime given by (20)-(22) delivers the sought system per-
formance. Using a small number of window averages 
( 20K < ) i.e. weakening the normality assumption of (11) 
did not inflict noticeable error on the attained results. How-
ever, at minK K=  the obtained ROC can marginally differ 
from the sought performance.  To avoid such situations, the 
user is advised to use values that slightly exceed minK . Fur-
ther experimental results (not shown here) showed that the 
distribution of simultaneously active channels across the 
scanned bandwidth does not hinder the performance of the 
detection procedure. 
By adopting the proposed approach, the sought system per-
formance was obtained for an α  of 90 MHz. If uniform 
sampling is deployed the minimum bandpass sampling rate 
that would avoid aliasing within the monitored bandwidth is 
225 MHz. Hence, 60% saving on the used sampling rate is 
achieved with the use of the proposed technique. In terms of 
the needed signal samples, around 20% saving is attained 
via deploying the adopted detection method. Therefore, the 
proposed approach in this paper offers substantial savings 
over conventional uniform sampling methods in terms of the 
sampling rate and the number of processed samples. It is 
noted that averaging a number of short analysis windows of 
length 0T  compares tolerably; favourably in some scenarios; 
with using a one considerably long time window as in [1-3]. 

 
Figure 1, ROC for various K ’s ( min 5K = ) and a threshold 

sweep ( Asterisk is the minimum sought ROC values) 

 
Figure 2, fP and dP  for various K values and min maxγ γ γ≤ ≤  

6. CONCLUSION 

The proposed spectrum sensing approach can operate at arbi-
trary low sampling rates and yet offer dependable spectrum 
sensing provided that the reliability conditions are fulfilled. 
However in order to preserve the reconstrutability of the de-
tected signals, it is necessary that the sampling rates exceed 
twice the total bandwidth of the concurrently active channels 

AB . This features compares favourably with uniform sam-
pling based spectrum sensing methods where the required 
sampling rates grow proportionally to the monitored band 
width B  regardless of spectral utilisation/activity. With low 
spectrum occupancy i.e. AB B<< , it is unambiguously clear 
that the use of the proposed technique would bring substan-
tial savings in terms of the sampling rates and the number of 
the processed samples. This paper serves as an impetus to 
further research into spectrum sensing algorithms that are 
DASP based and consider various system implementation 
issues e.g. transmissions with various power levels.  
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