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ABSTRACT Middleton with three models (class A, B and C) including

Impulsive interference has been measured recently in soniB€ non-Gaussian components of natural and human-made
wireless communication environments. By using measurgdPise [5]. The models are parametric with parameters ex-
data of partial discharge, we show in this paper that the Mid-Plicitly determined by the underlying physical mechanisms
dleton Class A model can approximate the impulsive nois@nd are canonical i.e. their mathematical form is indepen-
in an electricity substation better than the Gaussian noisedent of the physical environment. The distinction between
The measured data was obtained from HydroeQec’'s Re- the three models is based on the relative bandwidth of noise
search Institute in cooperation with ETEdole de technolo- @nd receiver. Middleton models have been shown to accu-
gie suggrieure of Montreal). We derive an extension of Mid-at€ly model the non-linear phenomenon governing electro-
dleton Class A model for multi-antenna systems. Using thi§agnetic interference. These models have been widely used
model with estimated parameters from measured data, wé €lectromagnetic applications and communication prob-
evaluate the performance of two linear MIMO precoders!€Ms [1. 6, 7]. In [7], for example, it was demonstrated that
with two spectral efficienciedt (it /s/Hz and8 bit/s/Hz). ~ fadio frequency interference (RFl) in a computation pkatfo
The maxdmin precoder optimizes the minimum Euclidean (€-9- 1aptop computer) is well modeled using the Middleton
distance of the received constellation and the max-SNR dr/ass A model. In this paper, our goal is to validate this sta-

single beamforming maximizes the received SNR. tistical model for an electricity substation by using measu
data and show its impact in §22), (2x 4) and (4x 4) MIMO
1. INTRODUCTION systems.

This paper is organized as follows: section 2 introduces
Wireless communications systems may experience severalbrief overview of the Middleton Class A model. Section 3
kinds of noise. In most of cases, e.g. thermal noise, it can bcuses on the validation of the Middleton Class A model
represented by a Gaussian model. However, wireless conyith measured data of partial discharge. The MIMO system
munications systems are seldom interfered by white Gaugrased on maxh, solution and the extension of Middleton
sian noise alone. The human-made electromagnetic (EM}lass A model for multi-antenna systems are presented in
environment, and much of the natural one, is basically imsection 4. Performances in terms of bit error rate (BER) are
pulsive and it can not be assumed to be Gaussian. The imresented in section 5.
pulsive noise has a highly structured form characterized by
significant probabilities of large interference levels ahdrt 2. MIDDLETON CLASSA MODEL
duration [1]. The impulsive noise or electromagnetic inter i
ference (EMI) can be found in many indoor and outdoorMiddleton Class A model refers to Narrowband Noise where
environments [2]. The electricity substation and eleatric Interference spectrum is narrower than the receiver band-
transmission networks are a typical example of such impul‘-"”dth- In this mode_l, the received interference is assumed
sive environment, where the partial discharge (PD) and thi® be @ process having two components [1, 5]:
corona effect are major sources of impulsive noise. Deploy-
ment of wireless communications (sensor network for exam- X(t) = Xe(t) +Xa(t) (1)

ple) in electricity substation for monitoring and contrg-a whereXp(t) andXs(t) are independent processes. They rep-

plications offers significant benefits over wired communica . ; . .
Lesent the non-Gaussian (impulsive) and Gaussian compo-

tions [3, 4]. Since wireless networks do not use expensiv : o . .
signal and control cables for data transmission, they ase ea eNts respectively. The probability density function (RDF

ier to install and use, and provide a cost-effective sohgio of X(t) is given in [1]:

for these applications. However, the impulsive character o w AM 2 m.

the interference can drastically degrade the performande a . (x) = ¢ > e%h with g2 = & )

the reliability of wireless communications systems even in = Mty /210, 1+

case of high signal to noise ratios (SNR). In order to guard

against unacceptable performance, the true charaateridti  Note thatf is a weighted sum of zero-mean Gaussians with

the noise must be taken into account. To do so, one needs artreasing varianceA andl” are the basic parameters of the

accurate model for the impulsive noise. model. Let us consider their definitions and physical signifi
Statistical-physical models of EMI have been derived bycance:
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1) Ais the Overlap Index or Nonstructure Index. In the procedure for validation, three statistical methads
used to compare measured and simulated noises:
A=VTs (3) 1) The probability density function (PDF) is estimated from
i . .. _measured data by using kernel density estimators [10]. A set
yvherev is the average number of emission events impiNg4¢ 1 F noise samples were used in estimation.
ing on the receiver per second aiiglis the mean dura- 5y "the "complementary cumulative distribution function

tion of a typical interfering source emission. The smaher ccpry gives the probability that the random variable is
is, the fewer the number of emission (events) and/or thei bove a particular level and is defined as:

durations. Therefore, the (instantaneous) noise praserti
are dominated by the waveform characteristics of individua
events. AsA is made larger, the noise becomes less struc-
tured, i.e., the statistics of the instantaneous amplifyole ) ) o )
proach the Gaussian distribution (according to centraitlim Where CDF is the cumulative distribution function. _

CCDR(x) = P(x > @) = /w PDF(x)dx=1— CDF(x) (7)

ture of the noise input to the receiver. similarity betwe_en_two probability distributionB and Q,
2)T is called the Gaussian factor. It is the ratio of powers inwhere (K-L)= 0 indicates thab = Q[11].
the Gaussian and non-Gaussian components Figures 2 and 3 show both PDF and CCDF for two measured
noises. Table 1 presents The K-L divergences of measured
(Xa) noise and the two models of noise. These results show that
r= ) (4)  the measured impulsive noise is better modeled by the Mid-

dleton Class A model as compared to Gaussian noise. Hence,
In general A € [10-4,1] andr" € [10-8, 1] [8]. By adjusting we can use the Middleton Class A as an approximated model
the parametera andT, the density in (2) can be made to fit fOr impulsive noise in electricity substation. Therefone
a great variety of non-Gaussian noise densities. evaluate the performance of wireless communication in such
environment by using the estimated parameters.

3. VALIDATION OF MIDDLETON CLASSA
MODEL FOR PARTIAL DISCHARGE

This work has been done in scientific collaboration between
XLIM-SIC laboratory, Hydro-Qébec’s Research Institute

and ETS as part of project for wireless sensor communica-
tion in disturbed environments. The electricity substatio
is an example of such environment where the partial dis- & wor
charge (PD) is a major source of impulsive noise. The PD o
is a result of incomplete electrical breakdown in insulgtin o
dielectrics resulting in an impulsive and component of cur- o+

rent. Hence, three specimens have been used in a laboratory i
of ETS in order to reproduce the PD and measure the impul-
sive noise. Therefore, they have provided us with three mea-
sured datasets. We validated the Middleton Class A model
with the measured noise by the following procedure of Fig- o ; T

ure 1. From the measured noise, we used the method of mo- T i it
ments [9] to estimate the parameté&sndl" of Middleton AR e o
Class A model:

0.2

9(es — 265)°
(6541263 — 9erey)?

2e5(e5+ 1265 — 9eve)
3 (6) 107k [P Y
3(es—2€3) b
wheree,, e; andeg are the second, the fourth and the sixth o e or om ;ﬂéshn.fﬁiplitu3;3 o o o
order moments of the envelope data respectively. These es-

timated parameters will then be used to generate the noise. ) )
Figure 2: Measured Noise-1 PDF and CCDF, estimated parame-

ters: Aest = 0.0280,l ¢t = 0.3978

CCDF P(X>a)

Aest= 2 (5)

rest =

Measured noise —————>  PDF, CCDF

'

Estimation of A and T —» Comparison Measured noise-1 Measured noise-2
‘ Class A 0.04 0.02
Simulated noise ———————p PDF, CCDF GaUSSIan 03 027

Middleton Class A
Table 1: K-L divergences
Figure 1. Procedure of validation of Middleton Class A model
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4.1 Linear precoder and maxdm, solution
Weasured noise Let us consider a MIMO system witfy transmit anch, re-

e ceive antennas over which we want to achibvedependent
data streams(< min(ng,ny)). The received signal can then

be expressed as:

y = GHFs + Gv (8)

wherey is theb x 1 received vectoss is theb x 1 symbols
vector of the constellatio@, v is an additive noise vector of
sizen, x 1, H is the channel matri¥ andG are the precoder
and decoder matrices, respectively. In our case, the additi
noise is the Middleton Class A model. The CSI permits the

e TN precoder to diagonalize the channel:
-0.01 -0.008 -0.006 -0.004 -0.002 Amp"omde 0.002 0.004 0.006 0.008 0.01
y = GpHFps+ Gpvy (9)
o ‘ ‘ ‘ T whereH, = GyHF, = diag(g, ..., 0p) is the virtual chan-
- - - Estmated Midleton nel matrix of sizeb x b, o stands for every subchannel gain
R R N Kty Gaussian noise (sorted by decreasing ordex)y = Gyv is the virtual noise,

Fp andGp areb x b matrices, representing the precoder and
decoder in the virtual channel. The power constraint is ex-
pressed as tra¢EF* } = trace FpF[ } = po wherep, is the
mean available transmit power. As only a maximum Likeli-
hood (ML) detection is considered in the rest of the paper, th
decoder matriXGp has no impact on the performance and is
consequently assumed to B = I, with I, the identity
matrix of sizeb x b. The minimum Euclidean distance be-
tween signal points at the receiver sijgy, is defined by :

CCDF P(X>a)

0 0002 0008 0006 0008 001 0.012 dmln(Fd) = m”’] HHVFd (sk—sl)H (10)

Threshold Amplitude (sk»s| )ECb SK#S|
B B

Figure 3: Measured Noise-2 PDF and CCDF, estimated parameWheresk ands are 2 symbols vector Whose entrie_s are ele-
ers: Avg — 0.3575. gt — 0.1104 ' ments ofC. Then, the maxdm, precoder is the solution of:
Fp = argmaxdmin(Fy) (12)
Fy
4. MIMO SYSTEM AND NOISE MODEL FOR

A very exploitable solution of (11) is given in [14] for two
MULTI-ANTENNA SYSTEMS

independent data streanhss 2 and a 4-QAM with a spectral
efficiency of 4bit/s/Hz. Recently, the solution with two 16-
AM symbols was also given [16]. This extension permits
increase the spectral efficiency tbB/s/Hz

Our research focuses on the wireless sensor communicati
in disturbed environments. Recently, there has been a gr
amount of research on various MIMO techniques for wire-
less communication systems, more particularly coopeativy 2 Extension of Middleton Class A model

MIMO and virtual antenna array concepts have been pro- ] _

posed to achieve MIMO capability in sensor networks [12]_M|ddleton Class A model was derived for single antenna sys-
In [12] the results showed that in some cases, cooperatiiMs. For a two-antenna system, we considered a bivariate
MIMO based sensor networks may lead to better energy 0d\/llddleton Class A model used in [7]. This mo<_jel is limited
timization and smaller end-to-end delay. Therefore, we conf© Nr = 2 antennas. Thus, we derive an extensiomfor 2.

sider a MIMO system to evaluate the impact of the impulsive/Ve can write (2) as

noise. The MIMO system is based on a linear precoder with w
the assumption that the channel state information (CSI) is f(x) = Z amg(X7u,0%) (12)
available at both transmit and receive side. The use of CSI =0

allows designing linear precoders by optimizing a pertinen

criteria such as maximizing the received Signal-to-Noiae R oAAM 9 1 2;X§

tio (max-SNR or beamforming), minimizing the mean squaréVheream = 5=, i = 0 andg(x, o) = V2rag, © on. The
error (MMSE), maximizing the capacity (Water-Filling selu  density of Middleton Class A can be approximated by the
tion) [13] or the maximization of the minimum Euclidean two-term model h= 0,1) [8]

distance of received constellation (mdym solution) [14].

The maxénin, precoder achieves good performances in terms f(x) = e*Ag(x7 gg) +(1- e*A)g(x, 012) (13)

of BER providing a significant gain of SNR compared to

other precoders [15] and it will be used in our MIMO sys- Let x = [X1, X2,Xs, ..., X| be a vector ok = n, random vari-
tem. ables, each variable has a Middleton Class A density functio
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—©— Gaussian noise
—8— Middleton-1
—+— Middleton-2

107G

SNR

Figure 4: BER of maxémi, 2 symbols 4-QAM, 2< 2 MIMO,
(4 bit/s/Hz)

andx is the noise observation at th& antenna. Then, the

multivariate density ok can be written as [8]

K= 3 anglxKn) (14)

whereay, is as in (12)K is the covariance matrix which rep-

resents the spatial correlation in the noise grid a multi-
variate Gaussian function

T T
—e— Middleton-1, 2x2
—+— Middleton-2, 2x2
—k— Gaussian, 2x4

—=— Middleton-1, 2x4
Middleton-2, 2x4

Figure 5. BER of maxémi, 2 symbols 4-QAM, 2« 2 and 2x 4
MIMO, (4 bit/s/HZ), (Middleton-1:Aest= 0.0280,est = 0.3978),
(Middleton-2: Aest = 0.3575,I g5t = 0.1194)

5. SIMULATION RESULTS

The performance of MIMO precoders presented in section 4
are evaluated in terms of BER in presence of impulsive noise.
The parameterd andl” estimated in section 3 were used to
generate the corresponding noise. For the noise model in
multi-antenna system, we considered a simple chsg €

M =r;=..=ry andpj; = p; = 0) to calculate the co-
variance matrix. The masal,, precoder uses two symbols
with QAM modulation, and an ML detection. The Middleton
Class A model is defined for only real sample observation.
For complex signals (QAM modulation), we assume that the
real and the imaginary parts of the signal are independent
and identically distributed {.d). We considered a traditional

where|.| denotes the determinant. From (14) and (15) weawL receiver, i.e., an ML receiver designed for Gaussian dis-

1 —xTk—1x
K(X)=—F7—7€ 2 (15)
(2m % K|z
obtain - i
—X' Km™X
()= 5 —om o (16)

o (211) % [Km|2

Equation (16) represents a general extension of Middleto

tributed noise. A flat Rayleigh-fading channel was used, i.e
His an fiy x ny) channel matrix with independent and identi-
cal distributed complex Gaussian entries with mean zero and
unit variance. We simulated the max;, precoder in several
Bases: with 4-QAM or 16-QAM(2x 2), (2x 4) or (4x 4)

Class A model for multi-antenna systems. We can use thF/IIMO systems

approximation as in (13) fomf= 0,1). Then, we obtain an

approximate version of the extension
—A “xTk1x —A Tk-1
e ) Ky ™
=~ e 2 (17)
(2m) 2 |Ky|2

()= e
T 2m) [Kol?

whereK, is ny X n; covariance matrix and is defined as

Var(xq)m Cov(Xg, Xk)m
Kim = : : (18)
Cov(X, X1 )m Var(X)m
R+

_ — 2

where Var(X)m= 477 = %m
CoMXi, Xj)m = Pij GimTjm

I« is the Gaussian factor at th&' antenna ang;; is the cor-

relation coefficient between the noise observatiorisaad j

antennas;-1 < p < 1. Finally, we can writ&, as

2

Oim P1kO01mOkm
Km = : (19)

. 2
Pk10kmO1m Okm

Figure 4 shows a degradation of BER of the nthyy
precoder (2 2 MIMO) in the presence of impulsive noise.
The energy of the Middleton Class A model is a sum of two
components of noise (Gaussian and impulsive). At low SNR,
the BER is sensitive to the Gaussian component of the Mid-
dleton Class A noise, which has lower energy than a classical
Gaussian noise. Hence, BER of Middleton Class A is better
compared to classical Gaussian noise at low SNR. At high
SNR, the MIMO system becomes sensitive to the impulsive
component and this degrades the performance of the wireless
systems in EMI (SNR loss can reach 5dBl)iddleton-1and
Middleton-2denote the estimated noises féed = 0.0280,

MNest = 0.3978) and Aest = 0.3575, Mgt = 0.1194) respec-
tively. When the value of¢g increases, the Gaussian com-
ponent increases and the BERMiddleton-2is close to the
Gaussian case. Moreover, Figure 5 shows the influence of the
number of receive antennas. When we increasdicbm 2 to

4, the BER is improved with a SNR gain near 4 dB. We can
also observe that the impulsive noise influence the diyersit
order. Indeed, the madyi, precoder achieves the maximum
diversity ordem; x n, in the Gaussian case. In the Middleton
case, the diversity is lower.

For 2x 2 MIMO system and a perfect or imperfect CSl,
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T T T
—e— Middleton-1, Max-dmin 16-QAM, 4 x4
—+— Middleton-2, Max—dmin 16-QAM, 4 x4
—=— Middleton-1, max-SNR 256-QAM, 4 x4/ -
Middleton—2, max-SNR 256-QAM, 4 x4

(5]

(6]

107 | 1 1 1
0 5 10 20 25 30

15
SNR

Figure 6: BER of maxémin, 2 symbols 16-QAM and max-SNR
one symbol 256-QAM, 4« 4 MIMO, (8 bit/s/Hz), (Middleton-1:
Aest: 0.0280,rest: 03978), (Middleton'erst: o.3575,rest:
0.1194)

we showed in [17] that the madni, 16-QAM precoder
achieved a better BER than the max-SNR (256-QAM) one
with a spectral efficiency of Bit /s/Hzand a Gaussian noise.
This performance of ma#m, 16-QAM is also similar for

4 x 4 MIMO and Gaussian noise. Hence, we evaluated the
performance of these precoders with 4 MIMO system and

the impulsive noise model in Subsection 4.2 . Figure 6 shows[9]
that the maxdn,in 16-QAM is still the best. However, in the
case ofMiddleton-1 i.e. with an impulsive component, be-
haviors of precoders are different. The ndyi, has a sig-
nificant SNR gain on the max-SNR except when the SNR is
about 15 dB. The two precoders are then close. It means th["‘itO]
the maxénin is more sensitive to the transition of the impul-
sive noise with a particular SNR.

[7]

(8]

[11]
6. CONCLUSION

In this paper, we used a Middleton Class A model in ordel[
to model the noise of an electricity substation. We validate
this model with measured data of different sort of partiat di
charge and the estimated paramaters can be used to evaluatﬁ
BER of MIMO systems. A simple extension of the model
was derived for multi-antenna systems in order to evaluate
the performance of linear precoders for MIMO systems in
presence of impulsive noise. The results showed that with

a high SNR (which is desirable in communication systems),
the performance of the linear precoder was degraded in tH&4]
presence of impulse noise compared to a Gaussian case. Fu-
ture research tracks might concern the following: 1) the op-
timization of the maxdnin precoder for the impulsive noise
model and 2) the validation of the multi-antenna extensiorn15]
with measured data.

12]
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