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ABSTRACT
Impulsive interference has been measured recently in some
wireless communication environments. By using measured
data of partial discharge, we show in this paper that the Mid-
dleton Class A model can approximate the impulsive noise
in an electricity substation better than the Gaussian noise.
The measured data was obtained from Hydro-Québec’s Re-
search Institute in cooperation with ETS (École de technolo-
gie suṕerieure of Montreal). We derive an extension of Mid-
dleton Class A model for multi-antenna systems. Using this
model with estimated parameters from measured data, we
evaluate the performance of two linear MIMO precoders
with two spectral efficiencies (4 bit/s/Hz and8 bit/s/Hz).
The max-dmin precoder optimizes the minimum Euclidean
distance of the received constellation and the max-SNR or
single beamforming maximizes the received SNR.

1. INTRODUCTION

Wireless communications systems may experience several
kinds of noise. In most of cases, e.g. thermal noise, it can be
represented by a Gaussian model. However, wireless com-
munications systems are seldom interfered by white Gaus-
sian noise alone. The human-made electromagnetic (EM)
environment, and much of the natural one, is basically im-
pulsive and it can not be assumed to be Gaussian. The im-
pulsive noise has a highly structured form characterized by
significant probabilities of large interference levels andshort
duration [1]. The impulsive noise or electromagnetic inter-
ference (EMI) can be found in many indoor and outdoor
environments [2]. The electricity substation and electrical
transmission networks are a typical example of such impul-
sive environment, where the partial discharge (PD) and the
corona effect are major sources of impulsive noise. Deploy-
ment of wireless communications (sensor network for exam-
ple) in electricity substation for monitoring and control ap-
plications offers significant benefits over wired communica-
tions [3, 4]. Since wireless networks do not use expensive
signal and control cables for data transmission, they are eas-
ier to install and use, and provide a cost-effective solutions
for these applications. However, the impulsive character of
the interference can drastically degrade the performance and
the reliability of wireless communications systems even in
case of high signal to noise ratios (SNR). In order to guard
against unacceptable performance, the true characteristics of
the noise must be taken into account. To do so, one needs an
accurate model for the impulsive noise.

Statistical-physical models of EMI have been derived by

Middleton with three models (class A, B and C) including
the non-Gaussian components of natural and human-made
noise [5]. The models are parametric with parameters ex-
plicitly determined by the underlying physical mechanisms,
and are canonical i.e. their mathematical form is indepen-
dent of the physical environment. The distinction between
the three models is based on the relative bandwidth of noise
and receiver. Middleton models have been shown to accu-
rately model the non-linear phenomenon governing electro-
magnetic interference. These models have been widely used
in electromagnetic applications and communication prob-
lems [1, 6, 7]. In [7], for example, it was demonstrated that
radio frequency interference (RFI) in a computation platform
(e.g. laptop computer) is well modeled using the Middleton
Class A model. In this paper, our goal is to validate this sta-
tistical model for an electricity substation by using measured
data and show its impact in (2×2), (2×4) and (4×4) MIMO
systems.

This paper is organized as follows: section 2 introduces
a brief overview of the Middleton Class A model. Section 3
focuses on the validation of the Middleton Class A model
with measured data of partial discharge. The MIMO system
based on max-dmin solution and the extension of Middleton
Class A model for multi-antenna systems are presented in
section 4. Performances in terms of bit error rate (BER) are
presented in section 5.

2. MIDDLETON CLASS A MODEL

Middleton Class A model refers to Narrowband Noise where
interference spectrum is narrower than the receiver band-
width. In this model, the received interference is assumed
to be a process having two components [1, 5]:

X(t) = XP(t)+XG(t) (1)

whereXP(t) andXG(t) are independent processes. They rep-
resent the non-Gaussian (impulsive) and Gaussian compo-
nents respectively. The probability density function (PDF)
of X(t) is given in [1]:

fP+G(x) = e−A
∞

∑
m=0

Am

m!
√

2πσ2
m

e
−x2

2σ2
m with σ2

m =
m
A +Γ
1+Γ

(2)

Note that f is a weighted sum of zero-mean Gaussians with
increasing variance.A andΓ are the basic parameters of the
model. Let us consider their definitions and physical signifi-
cance:
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1) A is the Overlap Index or Nonstructure Index.

A = vTs (3)

wherev is the average number of emission events imping-
ing on the receiver per second andTs is the mean dura-
tion of a typical interfering source emission. The smallerA
is, the fewer the number of emission (events) and/or their
durations. Therefore, the (instantaneous) noise properties
are dominated by the waveform characteristics of individual
events. AsA is made larger, the noise becomes less struc-
tured, i.e., the statistics of the instantaneous amplitudeap-
proach the Gaussian distribution (according to central limit
theory [5]). Hence,A is a measure of the non-Gaussian na-
ture of the noise input to the receiver.
2) Γ is called the Gaussian factor. It is the ratio of powers in
the Gaussian and non-Gaussian components

Γ =
(XG)

(XP)
(4)

In general,A∈ [10−4,1] andΓ ∈ [10−6,1] [8]. By adjusting
the parametersA andΓ, the density in (2) can be made to fit
a great variety of non-Gaussian noise densities.

3. VALIDATION OF MIDDLETON CLASS A
MODEL FOR PARTIAL DISCHARGE

This work has been done in scientific collaboration between
XLIM-SIC laboratory, Hydro-Qúebec’s Research Institute
and ETS as part of project for wireless sensor communica-
tion in disturbed environments. The electricity substation
is an example of such environment where the partial dis-
charge (PD) is a major source of impulsive noise. The PD
is a result of incomplete electrical breakdown in insulating
dielectrics resulting in an impulsive and component of cur-
rent. Hence, three specimens have been used in a laboratory
of ETS in order to reproduce the PD and measure the impul-
sive noise. Therefore, they have provided us with three mea-
sured datasets. We validated the Middleton Class A model
with the measured noise by the following procedure of Fig-
ure 1. From the measured noise, we used the method of mo-
ments [9] to estimate the parametersA andΓ of Middleton
Class A model:

Aest =
9(e4−2e2

2)
3

2(e6 +12e3
2−9e2e4)2

(5)

Γest =
2e2(e6 +12e3

2−9e2e4)

3(e4−2e2
2)

3
(6)

wheree2, e4 ande6 are the second, the fourth and the sixth
order moments of the envelope data respectively. These es-
timated parameters will then be used to generate the noise.

Measured noise

Estimation of A and Γ

Simulated noise

Comparison

PDF, CCDF

PDF, CCDF

Middleton Class A

Figure 1: Procedure of validation of Middleton Class A model

In the procedure for validation, three statistical methodsare
used to compare measured and simulated noises:
1) The probability density function (PDF) is estimated from
measured data by using kernel density estimators [10]. A set
of 105 noise samples were used in estimation.
2) The complementary cumulative distribution function
(CCDF) gives the probability that the random variable is
above a particular level and is defined as:

CCDF(x) = P(x > a) =
∫ ∞

x
PDF(x)dx= 1−CDF(x) (7)

where CDF is the cumulative distribution function.
3) The Kullback-Leibler divergence (K-L) measures the dis-
similarity between two probability distributionsP and Q,
where (K-L)= 0 indicates thatP = Q [11].
Figures 2 and 3 show both PDF and CCDF for two measured
noises. Table 1 presents The K-L divergences of measured
noise and the two models of noise. These results show that
the measured impulsive noise is better modeled by the Mid-
dleton Class A model as compared to Gaussian noise. Hence,
we can use the Middleton Class A as an approximated model
for impulsive noise in electricity substation. Therefore,we
evaluate the performance of wireless communication in such
environment by using the estimated parameters.
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Figure 2: Measured Noise-1 PDF and CCDF, estimated parame-
ters:Aest = 0.0280,Γest = 0.3978

Measured noise-1 Measured noise-2
Class A 0.04 0.02
Gaussian 0.3 0.27

Table 1: K-L divergences
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Figure 3: Measured Noise-2 PDF and CCDF, estimated parame-
ters:Aest = 0.3575,Γest = 0.1194

4. MIMO SYSTEM AND NOISE MODEL FOR
MULTI-ANTENNA SYSTEMS

Our research focuses on the wireless sensor communication
in disturbed environments. Recently, there has been a great
amount of research on various MIMO techniques for wire-
less communication systems, more particularly cooperative
MIMO and virtual antenna array concepts have been pro-
posed to achieve MIMO capability in sensor networks [12].
In [12] the results showed that in some cases, cooperative
MIMO based sensor networks may lead to better energy op-
timization and smaller end-to-end delay. Therefore, we con-
sider a MIMO system to evaluate the impact of the impulsive
noise. The MIMO system is based on a linear precoder with
the assumption that the channel state information (CSI) is
available at both transmit and receive side. The use of CSI
allows designing linear precoders by optimizing a pertinent
criteria such as maximizing the received Signal-to-Noise Ra-
tio (max-SNR or beamforming), minimizing the mean square
error (MMSE), maximizing the capacity (Water-Filling solu-
tion) [13] or the maximization of the minimum Euclidean
distance of received constellation (max-dmin solution) [14].
The max-dmin precoder achieves good performances in terms
of BER providing a significant gain of SNR compared to
other precoders [15] and it will be used in our MIMO sys-
tem.

4.1 Linear precoder and max-dmin solution

Let us consider a MIMO system withnt transmit andnr re-
ceive antennas over which we want to achieveb independent
data streams (b≤ min(nt ,nr)). The received signal can then
be expressed as:

y = GHFs+Gv (8)

wherey is theb×1 received vector,s is theb×1 symbols
vector of the constellationC, v is an additive noise vector of
sizenr ×1,H is the channel matrix,F andG are the precoder
and decoder matrices, respectively. In our case, the additive
noise is the Middleton Class A model. The CSI permits the
precoder to diagonalize the channel:

y = GDHvFDs+GDvv (9)

whereHv = GvHFv = diag(σ1, . . . ,σb) is the virtual chan-
nel matrix of sizeb×b, σi stands for every subchannel gain
(sorted by decreasing order),vv = Gvv is the virtual noise,
FD andGD areb×b matrices, representing the precoder and
decoder in the virtual channel. The power constraint is ex-
pressed as trace{FF∗}= trace{FDF∗

D}= po wherepo is the
mean available transmit power. As only a maximum Likeli-
hood (ML) detection is considered in the rest of the paper, the
decoder matrixGD has no impact on the performance and is
consequently assumed to beGD = Ib, with Ib the identity
matrix of sizeb×b. The minimum Euclidean distance be-
tween signal points at the receiver sidedmin is defined by :

dmin(Fd) = min
(sk,sl )∈Cb,sk 6=sl

‖HvFd(sk− sl )‖ (10)

wheresk andsl are 2 symbols vector whose entries are ele-
ments ofC. Then, the max-dmin precoder is the solution of:

FD = argmax
Fd

dmin(Fd) (11)

A very exploitable solution of (11) is given in [14] for two
independent data streams,b= 2 and a 4-QAM with a spectral
efficiency of 4bit/s/Hz. Recently, the solution with two 16-
QAM symbols was also given [16]. This extension permits
to increase the spectral efficiency to 8bit/s/Hz.

4.2 Extension of Middleton Class A model

Middleton Class A model was derived for single antenna sys-
tems. For a two-antenna system, we considered a bivariate
Middleton Class A model used in [7]. This model is limited
to nr = 2 antennas. Thus, we derive an extension fornr ≥ 2.
We can write (2) as

f (x) =
∞

∑
m=0

amg(x,µ ,σ2
m) (12)

wheream = e−AAm

m! , µ = 0 andg(x,σ2
m) = 1√

2πσ2
m

e
−x2

2σ2
m . The

density of Middleton Class A can be approximated by the
two-term model (m= 0,1) [8]

f (x) = e−Ag(x,σ2
0 )+(1−e−A)g(x,σ2

1 ) (13)

Let x = [x1,x2,x3, . . . ,xk] be a vector ofk = nr random vari-
ables, each variable has a Middleton Class A density function
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Figure 4: BER of max-dmin 2 symbols 4-QAM, 2× 2 MIMO,
(4 bit/s/Hz)

andxk is the noise observation at thekth antenna. Then, the
multivariate density ofx can be written as [8]

fx(x) =
∞

∑
m=0

amg(x,Km) (14)

wheream is as in (12),K is the covariance matrix which rep-
resents the spatial correlation in the noise andg is a multi-
variate Gaussian function

gx(x) =
1

(2π)
nr
2 |K| 1

2

e
−xT K−1x

2 (15)

where|.| denotes the determinant. From (14) and (15) we
obtain

fx(x) =
∞

∑
m=0

am

(2π)
nr
2 |Km|

1
2

e
−xT K−1

m x
2 (16)

Equation (16) represents a general extension of Middleton
Class A model for multi-antenna systems. We can use the
approximation as in (13) for (m= 0,1). Then, we obtain an
approximate version of the extension

fx(x)=
e−A

(2π)
nr
2 |K0|

1
2

e
−xT K−1

0 x
2 +

1−e−A

(2π)
nr
2 |K1|

1
2

e
−xT K−1

1 x
2 (17)

whereKm is nr ×nr covariance matrix and is defined as

Km =





Var(x1)m . . . Cov(x1,xk)m
...

. ..
...

Cov(xk,x1)m . . . Var(xk)m



 (18)

where







Var(xk)m =
m
A +Γk
1+Γk

= σ2
km

Cov(xi ,x j)m = ρi j σimσ jm

.

Γk is the Gaussian factor at thekth antenna andρi j is the cor-
relation coefficient between the noise observations ati and j
antennas,−1≤ ρ ≤ 1. Finally, we can writeKm as

Km =







σ2
1m . . . ρ1kσ1mσkm
...

. ..
...

ρk1σkmσ1m . . . σ2
km






(19)
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Figure 5: BER of max-dmin 2 symbols 4-QAM, 2× 2 and 2× 4
MIMO, (4 bit/s/Hz), (Middleton-1:Aest = 0.0280,Γest = 0.3978),
(Middleton-2:Aest = 0.3575,Γest = 0.1194)

5. SIMULATION RESULTS

The performance of MIMO precoders presented in section 4
are evaluated in terms of BER in presence of impulsive noise.
The parametersA andΓ estimated in section 3 were used to
generate the corresponding noise. For the noise model in
multi-antenna system, we considered a simple case (Γest =
Γ1 = Γ2 = ... = Γnr andρi j = ρ ji = 0) to calculate the co-
variance matrix. The max-dmin precoder uses two symbols
with QAM modulation, and an ML detection. The Middleton
Class A model is defined for only real sample observation.
For complex signals (QAM modulation), we assume that the
real and the imaginary parts of the signal are independent
and identically distributed (i.i.d). We considered a traditional
ML receiver, i.e., an ML receiver designed for Gaussian dis-
tributed noise. A flat Rayleigh-fading channel was used, i.e.,
H is an (nr ×nt) channel matrix with independent and identi-
cal distributed complex Gaussian entries with mean zero and
unit variance. We simulated the max-dmin precoder in several
cases: with 4-QAM or 16-QAM,(2×2), (2×4) or (4×4)
MIMO systems.

Figure 4 shows a degradation of BER of the max-dmin
precoder (2×2 MIMO) in the presence of impulsive noise.
The energy of the Middleton Class A model is a sum of two
components of noise (Gaussian and impulsive). At low SNR,
the BER is sensitive to the Gaussian component of the Mid-
dleton Class A noise, which has lower energy than a classical
Gaussian noise. Hence, BER of Middleton Class A is better
compared to classical Gaussian noise at low SNR. At high
SNR, the MIMO system becomes sensitive to the impulsive
component and this degrades the performance of the wireless
systems in EMI (SNR loss can reach 5dB).Middleton-1and
Middleton-2denote the estimated noises for (Aest = 0.0280,
Γest = 0.3978) and (Aest = 0.3575, Γest = 0.1194) respec-
tively. When the value ofAest increases, the Gaussian com-
ponent increases and the BER ofMiddleton-2is close to the
Gaussian case. Moreover, Figure 5 shows the influence of the
number of receive antennas. When we increasednr from 2 to
4, the BER is improved with a SNR gain near 4 dB. We can
also observe that the impulsive noise influence the diversity
order. Indeed, the max-dmin precoder achieves the maximum
diversity ordernt ×nr in the Gaussian case. In the Middleton
case, the diversity is lower.

For 2×2 MIMO system and a perfect or imperfect CSI,
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we showed in [17] that the max-dmin 16-QAM precoder
achieved a better BER than the max-SNR (256-QAM) one
with a spectral efficiency of 8bit/s/Hzand a Gaussian noise.
This performance of max-dmin 16-QAM is also similar for
4×4 MIMO and Gaussian noise. Hence, we evaluated the
performance of these precoders with 4×4 MIMO system and
the impulsive noise model in Subsection 4.2 . Figure 6 shows
that the max-dmin 16-QAM is still the best. However, in the
case ofMiddleton-1, i.e. with an impulsive component, be-
haviors of precoders are different. The max-dmin has a sig-
nificant SNR gain on the max-SNR except when the SNR is
about 15 dB. The two precoders are then close. It means that
the max-dmin is more sensitive to the transition of the impul-
sive noise with a particular SNR.

6. CONCLUSION

In this paper, we used a Middleton Class A model in order
to model the noise of an electricity substation. We validated
this model with measured data of different sort of partial dis-
charge and the estimated paramaters can be used to evaluate
BER of MIMO systems. A simple extension of the model
was derived for multi-antenna systems in order to evaluate
the performance of linear precoders for MIMO systems in
presence of impulsive noise. The results showed that with
a high SNR (which is desirable in communication systems),
the performance of the linear precoder was degraded in the
presence of impulse noise compared to a Gaussian case. Fu-
ture research tracks might concern the following: 1) the op-
timization of the max-dmin precoder for the impulsive noise
model and 2) the validation of the multi-antenna extension
with measured data.
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