
FURTHER IMPROVEMENT OF THE ADAPTIVE LEVEL OF DETAIL TRANSFORM:
SPLITTING IN DIRECTION OF THE NONLINEARITY

Friedrich Faubel and Dietrich Klakow

Spoken Language Systems
Saarland University, Campus C7-1, D-66123 Saarbrücken, Germany

email: {friedrich.faubel, dietrich.klakow}@lsv.uni-saarland.de
web: www.lsv.uni-saarland.de

ABSTRACT

In earlier work, we have presented a novel approach to non-
linear, non-Gaussian tracking problems. The approach was
based on keeping a bank of unscented Kalman filters, which
were split and merged in order to adapt the level of detail of
the filtering density according to the nonlinearity of the track-
ing problem. More recently, that approach has been refined
and generalized to a general method for nonlinear transfor-
mations of Gaussian mixture random variables. Here, we fur-
ther extend it by the following aspects: we consider splitting
a Gaussian distribution into three components rather than
two; and we show how splitting can be performed in direc-
tion of the nonlinearity, which in simulations gave a 25% re-
duction of the mean squared error, compared to the previous
implementation of the split and merge unscented Gaussian
mixture filter. In addition to that, we show how splitting can
be implemented efficiently, through Cholesky downdates.

1. INTRODUCTION

We have recently proposed an adaptive Gaussian mixture fil-
ter [3] for nonlinear, non-Gaussian tracking problems. It is
based on splitting Kalman filters in likely regions of state
space and on merging them in unlikely ones, with the aim of
adapting the level of detail of the filtering density according
to the posterior probability of the modes. This approach was
inspired by the resampling stage of particle filters [1] where
a similar objective is achieved by multiplying and remov-
ing samples. Further, motivated by the fact that Kalman fil-
ters are optimal for linear, Gaussian problems, we introduced
a split control technique [3] that prevents filters from being
split if they operate in relatively linear regions of state space.
It should be noted that splitting is beneficial in nonlinear re-
gions as it decreases the variances and thereby the degree of
nonlinearity to which the filters are subject. This idea was
further refined in [2] where Gaussians are split based on both
their weight in the mixture and the degree of nonlinearity.
A related but theoretically more well-founded approach has
been taken in [4] where the Gaussians to be split are deter-
mined based on the L2 distance measure. That work, how-
ever, considered one-dimensional tracking problems only.

In [2, 3], multivariate Gaussian distributions are split in
direction of the largest eigenvalue of the covariance matrix.
That gives the greatest reduction in variance. However, it is
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not optimal as it disregards the fact that the reason for split-
ting is actually the nonlinearity, which the Gaussians are sub-
ject to during transformation. Hence, in this work, we inves-
tigate how Gaussians can be split in the direction of nonlin-
earity. In addition to that, we show how Gaussians can be
split into mixtures of three components – rather than two [3]
– and further give an efficient implementation of the splitting
procedure, using Cholesky downdates. The latter is of inter-
est, especially if the Kalman filters are implemented in their
square root form [9], as in that case the covariance matrices
are represented by Cholesky factors anyway.

The remaining part of this paper is organized as follows.
Section 2 briefly reviews the unscented transform. Section 3
describes how Gaussian distributions can be split into mix-
tures of two and three components. In Section 4, we intro-
duce the concept of splitting in direction of the nonlinearity,
which is finally evaluated in experiments, in Section 5.

2. REVIEW OF THE UNSCENTED TRANSFORM

The unscented transform (UT) approximates a Gaussian
probability distribution by a finite number of points, which
are chosen in such a way that they have the same mean and
covariance as the original distribution. This procedure was
introduced by Julier and Uhlmann [6] in order to approxi-
mate the nonlinear transform Y = f (X) of an n-dimensional
Gaussian random variable X with distribution

pX (x) = N (x; µX ,ΣX ),

parametrized by the mean µX and the covariance matrix ΣX .
The point mass representation is based on the Cholesky de-
composition RT R of the covariance matrix ΣX and it is ob-
tained as follows. Denoting the rows of R by Ri and defining
λ = n+κ for an arbitrary κ ∈ R, the distribution of X can
be represented by the weighted empirical distribution

p̃X (x) =
2n

∑
i=0

Wiδ (x−Xi) (1)

where δ is the Dirac delta and where the points and weights,
Xi and Wi, are given by

X0 = µX W0 = κ/λ

X2i+1 = µX +
√

λRi W2i+1 = 1/(2λ )

X2i+2 = µX −
√

λRi W2i+2 = 1/(2λ )
(2)

i = 0, . . . ,(n− 1). Note that κ specifies how much weight
is placed on the mean, X0. Setting κ to 1/2 results in a
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weight of 1/n for each of the points. Setting it to 3−n mini-
mizes the error in the fourth moment [7]. Similar as in Monte
Carlo methods, the weighted points Xi can be instantiated
through the function f , Yi = f (Xi), which then in turn yields
a weighted empirical distribution of Y :

p̃Y (y) =
2n

∑
i=0

Wiδ (y−Yi). (3)

Hence, a Gaussian approximation p̂Y (y) = N (Y ; µ̂Y , Σ̂Y ) of
the transformed distribution can be obtained by estimating
the mean and covariance of Y in a maximum likelihood fash-
ion:

µ̂Y =
2n

∑
i=0

WiYi, Σ̂Y =
2n

∑
i=0

Wi(Yi −µY )(Yi −µY )
T . (4)

This is the unscented transform. For linear transforms it is
exact – that is, the Gaussian fit is not an approximation but
the true, transformed density. For nonlinear transforms its
mean and covariance estimates are accurate up to the sec-
ond order term of the Taylor series expansion [7]. In the lat-
ter case, the appropriateness of the Gaussian approximation
can be determined by estimating the degree of nonlinearity
as proposed in [2]:

η ,
1

n

n−1

∑
i=0

ηi, (5)

where ηi denotes the degree of nonlinearity of the i-th triple
{X2i+1,X0,X2i+2} of original points, calculated on the cor-
responding triple of transformed points {Y2i+1,Y0,Y2i+2},
as

ηi =
1

2
‖Y2i+1 +Y2i+2 −2Y0‖2. (6)

This measure is based on the fact that each triple
{X2i+1,X0,X2i+2} forms a set of equidistant points on a
line. Consequently, the degree of nonlinearity is calculated
as the deviation from a linear fit of the transformed points
(see [3] for a more thorough derivation).

3. SPLITTING GAUSSIAN DISTRIBUTIONS

By “splitting” a (multivariate) Gaussian distribution we mean
approximating it by a mixture of Gaussian distributions with
smaller variances. This can be achieved by using a splitting
library, as in [4, 5], or by slightly displacing the means while
adopting the covariance matrix of the original distribution
[8, 4]. In this work, we take a different approach based on
moment matching and symmetry. Moreover, we restrict our-
selves to splitting in direction of eigenvectors. This avoids
problems with – possibly resulting – indefinite covariance
matrices; and it allows us to reduce the generally multivari-
ate, n-dimensional case to splitting a standard normal dis-
tribution. The direction in which we split might be given by
the eigenvector corresponding to the largest eigenvalue – that
is, the direction of the largest variance – or by the eigenvec-
tor to which the direction of the nonlinearity is most similar
(see Section 4 for details). In the following, we start with
splitting the standard normal distribution into two and three
components, respectively, in Sections 3.1 and 3.2. Then, in
Section 3.3, we extend the splitting approach to the general,
multivariate case.
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Figure 1: Splitting into two Gaussians with a displacement
of 0.5. The picture to the left shows the original distribution
(solid line, highlighted area) along with the mixture of split
components (dashed line). The picture to the right shows the
individual components.

3.1 Splitting into Two Components

In order to split the normal distribution N (x;0,1) into two
components, g1(x) and g2(x), we first of all use its symmetry.
The symmetry tells us that if we displace one of the Gaus-
sians by ν from the origin the other Gaussian must be placed
at −ν . For the same reason, the two components must have
the same mixture weight α and the same variance σ2. This
constrains the parameter optimization problem to finding the
displacement as well as the variance of the two components,

g1(x) = N (x;ν ,σ2), g2(x) = N (x;−ν ,σ2). (7)

From the law of total probability it is clear that the mixture
weights must be one half. Hence, splitting the normal distri-
butions is tantamount to replacing it by the mixture

m(x) = 0.5g1(x)+0.5g2(x). (8)

The second moment Em

{
x2
}
=

∫
x2m(x)dx of the mixture

can be obtained by first using the linearity property of inte-
gration to get separate integrals over g1(x) and g2(x) and then
performing a change of variables from x to y = x − ν and
y = x+ ν , respectively, which yields: Em

{
x2
}
= ν2 +σ2.

Subsequently matching the second moment of the mixture to
that of the normal distribution, i.e. one, the variance can be
expressed in dependency of the displacement:

σ2 = 1−ν2. (9)

In order for this equation to be valid ν must be in the range
[−1,1]. Further, it can be shown that the absolute (L1) error

in the fourth moment is 2ν4, which is clearly minimal for
the trivial solution ν = 0 and which monotonically increases
with |ν | until it takes its maximum, 2, at |ν | = 1. As a con-
sequence of this result, we decided to keep ν as a parameter.
A value of 0.5 seemed to give a good trade-off between dis-
placement of components and accuracy of approximation, at
least for the problems that we have been working on so far.

3.2 Splitting into Three Components

The splitting approach from the previous section can eas-
ily be extended to the case of splitting a Gaussian into three
components, g1(x), g2(x) and g3(x). Making use of the sym-
metry of the normal distribution, we again displace the first
Gaussian by ν , the second one by −ν . The third Gaussian
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Figure 2: Splitting into three Gaussians with a displacement
of 0.5. The picture to the left shows the original distribution
(solid line, highlighted area) along with the mixture of split
components (dashed line). The picture to the right shows the
individual components.

is centered at zero as portrayed in Figure 2-b. Then, choos-
ing a weight α ≤ 0.5 for each of the displaced components
uniquely determines the weight of the center component, as
1−2α . Hence the mixture can be written

m(x) = αg1(x)+αg2(x)+(1−2α)g3(x). (10)

The Gaussians in the mixture are further parameterized by
the variance σ2 of the displaced components, as well as the
variance τ2 of the center component. In the following we
will assume that τ is equal to σ , which greatly simplifies the
optimization problem in that it does not require matching the
sixth moment of the distributions. After this simplification,
the mixture components are:

g1(x) = N (x;ν ,σ2), g2(x) = N (x;−ν ,σ2),

g3(x) = N (x;0,σ2).
(11)

Similar to the case of two components, we will try to express
α and σ2 in dependence of the displacement ν . For that, we
match the second and fourth moment of the mixture to those
of the normal distribution:

Em

{
x2
}
= 2αν2 +σ2 = 1

Em

{
x4
}
= 2αν4 +12ασ2ν2 +3σ4 = 3

Solving this system of equations and discarding the trivial
solution σ2 = 1 yields

α =
1

6
, σ2 = 1− 1

3
ν2. (12)

These equations are valid for displacements ν in the range

[−
√

3,
√

3]. The difference to the normal distribution is
shown in Figure 3-b, for ν = 0.5. Figure 3-a gives a compar-
ison to the “splitting into two components” approach from
the previous section. Furthermore, it can be shown that the

absolute (L1) error in the sixth moment is 2
9
ν6.

3.3 Multivariate Gaussian Distributions

Splitting a multivariate Gaussian distribution N (x; µ;Σ) in
direction of an eigenvector can be reduced to splitting a stan-
dard normal distribution. For that, let UT Λ U be the eigen-
decomposition of the covariance matrix Σ, with a diagonal
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Figure 3: Difference between original and split distributions
for a displacement of 0.5. Not that the scale of the image to
the right is one hundredth of that of the image to the left.

matrix Λ containing the eigenvalues λi and a unitary matrix
U containing the corresponding eigenvectors ui:

Λ =








λ1 0 · · · 0

0 λ2

. . .
...

...
. . .

. . . 0
0 · · · 0 λn







, U =








u
T
1u
T
1

...

u
T
nu
T
n







.

Then using the exponentiation identity exp(x+ y) = exp(x) ·
exp(y) and the fact that the determinant of Σ can be factored
as det(Σ) = ∏i λi, the probability density function can be
written

p(x) =
N

∏
i=1

N
(
u

T
i x; uT

i µ, λi

)

︸ ︷︷ ︸

, fi(x)

. (13)

Now, let g̃k(x) = N (x; µ̃k, σ̃
2
k ), k = 1, . . . ,K, be the compo-

nents resulting from a split of the standard normal distribu-
tion. Then, splitting the multivariate distribution p(x) in di-
rection of the j-th eigenvector can be achieved by performing
the following steps:

1. Scaling the components, g̃k(x), by 1/
√

λ j in x-direction

in order to match the variance λ j of p(x) in direction of
the eigenvector u j.

2. Rotating the resulting, rescaled components with dis-

tribution ḡk(x) = N (x;
√

λ j µ̃k,λ jσ̃
2
k ) into u j and then

adding the mean u
T
j µ , which gives:

f̃ j,k(x), N

(

u
T
j x; uT

j µ +
√

λ j µ̃k, λ jσ̃
2
k

)

.

3. Replacing f j(x) in (13) by f̃ j,k(x) for k = 1, . . . ,K in or-
der to obtain the split components of the multivariate dis-
tribution:

gk(x) =






n

∏
i=1
i6= j

fi(x)




 f̃ j,k(x), (14)

As ui
T (µ +

√
λ j µ̃ku j) is (ui

T µ) for i 6= j and (uT
j µ +

√
λ j µ̃k) for i = j, the mean, µk, of the k-th component, gk,

can obviously be recovered as

µk = µ +
√

λ j µ̃ku j. (15)
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Splitting into Two Gaussians

ω1 =
1
2

µ1 = µ +ν
√

λu Σ1 = Σ−ν2λuuT

ω2 =
1
2

µ2 = µ −ν
√

λu Σ2 = Σ−ν2λuuT

Splitting into Three Gaussians

ω1 =
1
6

µ1 = µ +ν
√

λu Σ1 = Σ− 1
3
ν2λuuT

ω2 =
1
6

µ2 = µ −ν
√

λu Σ2 = Σ− 1
3
ν2λuuT

ω3 =
4
6

µ3 = µ Σ3 = Σ− 1
3
ν2λuuT

Splitting into Two Gaussians

ω1 =
1
2

µ1 = µ +ν
√

λu Σ1 = Σ−ν2λuuT

ω2 =
1
2

µ2 = µ −ν
√

λu Σ2 = Σ−ν2λuuT

Splitting into Three Gaussians

ω1 =
1
6

µ1 = µ +ν
√

λu Σ1 = Σ− 1
3
ν2λuuT

ω2 =
1
6

µ2 = µ −ν
√

λu Σ2 = Σ− 1
3
ν2λuuT

ω3 =
4
6

µ3 = µ Σ3 = Σ− 1
3
ν2λuuT

Table 1: Mixture parameters for splitting N (µ,Σ) into two
and three Gaussians with displacement ν in the direction of
eigenvector u with corresponding eigenvalue λ .

The corresponding covariance matrix Σk can be obtained by
expressing it by means of its eigenvectors and eigenvalues:

Σk =
n

∑
i=1
i6= j

λiuiu
T
i + σ̃2

k λ ju ju
T
j

=
n

∑
i=1

λiuiu
T
i

︸ ︷︷ ︸

=Σ

−
(
1− σ̃2

k

)
λ ju ju

T
j (16)

This is a simple rank-1 downdate. Hence, given the Cholesky
factor of Σ is available – as is the case for the square root im-
plementation of the unscented transform [10] – the Cholesky
factor of Σk can efficiently be obtained through a Cholesky
downdate. Table 1 concludes this section by explicitly giving
the mixture weights ωk, means µk and covariance matrices Σk

for splitting into two and three Gaussians.

4. SPLITTING IN DIRECTION OF THE
NONLINEARITY

In [5] and [3], splitting was performed in the direction of the
largest variance, given by the eigenvector corresponding to
the largest eigenvalue of the covariance matrix. Splitting in
this direction obviously gives the greatest reduction in vari-
ance. However, it might not be optimal as the reason for
splitting is the nonlinearity that the distribution is subject to
during transformation. To illustrate this problem, consider
the following example of a transformation f (X) of a Gaus-
sian random variable X with

µX =

[

0
3

]

, ΣX =

[

9 0
0 1

]

, f

([

x1

x2

])

=

[
x1

x2
2

]

.

For this example, the adaptive level of detail transform
(ALoDT) from [2] cannot improve over the unscented trans-
form – at least not in the first couple of iterations. That is be-
cause the distribution of X is split in x1-direction, where the
variance is largest but where f is linear. From Figure 4 it is
obvious that the transformed distribution portrayed in 4-(a)
is still “almost” Gaussian while the true distribution shown
in Figure 4-(c) is strongly non-Gaussian. Therefore, we pro-
pose splitting in direction of the nonlinearity, which we per-
form as follows. Bearing in mind that, in the unscented trans-
form, the i-th triple {X2i+1,X0,X2i+2} of points forms a set
of equidistant points on a line, the nonlinearity in direction

φi =
X2i+1 −X0

‖X2i+1 −X0‖
(17)

(a) ALoDT-4[v] (b) ALoDT-4[n] (c) true density

Figure 4: Contour plots of the transformed distributions ob-
tained with the ALoDT using 4 Gaussians, for splitting in
direction of the largest variance [v] and splitting in direction
of the nonlinearity [n].

can obviously be approximated by the degree of nonlinearity,
ηi, associated with these points. Consequently, the direction
of nonlinearity can be defined as the eigenvector ψ corre-
sponding to the largest eigenvalue of

Ψ =
n−1

∑
i=0

ηiφiφ
T
i . (18)

That is the direction in which the nonlinearity is strongest.
As a computationally less demanding alternative, the direc-
tion of nonlinearity can be approximated as the average over
the φi, weighted with the corresponding ηi:

ψ ′ =
∑

n−1
i=0 ηiφi

∥
∥∑

n−1
i=0 ηiφi

∥
∥
. (19)

For implementing a split in direction of the nonlinearity, it
should be noted that splitting a Gaussian distribution in an
arbitrary direction ψ turns out to be difficult unless ψ coin-
cides with one of the principal axes of the covariance matrix.
Hence, we split in the direction of that eigenvector ui, which
ψ is most similar to, i.e. the one for which u

T
i ψ is maximal.

5. EXPERIMENTS

In order to evaluate the performance of the proposed exten-
sions, we performed a series of simulations, in which a ma-
neuvering object was tracked based on sensor measurements.
In these simulations, the object moved along the synthetic
trajectory portrayed in Figure 5,

xt = 10 [sin(st)+1 (cos(st)+1)sin( st
2
) cos(2st)st ]

T
,

st =
4πt
500

, t = 1, . . . ,500, and was observed by virtual sen-

sors located at [0 0 0]T providing measurements in polar co-
ordinates. Additive measurement noise was simulated from
a Gaussian, whose means and covariances were chosen at
random – once for each of the 50 experiments performed.
The average variance was 0.073 for the distance, 0.0031 and
0.0044 for the angles. As a process model we used a simple,
zeroth-order linear dynamic model, xt = xt−1+wt , with zero-
mean Gaussian process noise, wt , whose covariance matrix
was estimated on the synthetic trajectory and further scaled
by a factor of two in order to increase stability. At time
t = 1 the filters were initialized with a Gaussian distribution
around the true state, x1, with process noise covariance.

Table 2 shows mean squared errors (MSE)s for the split
and merge unscented Gaussian mixture filter [3] using the
splitting priority from [2] as a splitting criterion. The num-
bers are averaged over 50 simulations and correspond to 500
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Figure 5: Trajectory used in the simulations.

point trajectories. The first row of the table shows results for
splitting into two components, in dependence of the number
of filters (#Gaussians). With 2 filters, the MSE – being 927
for a single unscented Kalman filter – could be greatly re-
duced. Further increasing the number of filters just slightly
improved the result. For splitting into three components (sec-
ond row of the table), the MSE was lower in general but it be-
haved less consistently, which might have to do with the fact
that, in the merge stage, we merge the filters successively in
pairs. As a consequence of this, we only considered splitting
into two components in the following.

Table 3 shows the mean squared errors we obtained by
splitting in direction of the nonlinearity rather than in direc-
tion of the largest eigenvalue of the covariance matrix. In row
one, the direction of nonlinearity was estimated as the eigen-
vector corresponding to the maximum eigenvalue of (18). In
row two, it was estimated according to (19). The best re-
sult was obtained in row two, with 64 filters. In that case,
the MSE was 573, which is almost 40% lower than that of
the unscented Kalman filter and roughly 25% lower than the
best result obtained with splitting in direction of the largest
variance. For a low (≤ 4) number of filters, the proposed ap-
proach failed to give improvements. With just two filters it
even performed worse than the UKF. This problem seems to
be a consequence of the merge stage. The point is that split-
ting in direction of the nonlinearity can result in more dis-
tinct Gaussian components of the transformed distribution,
especially if a lower number of filters is used. Then, if two
distinct Gaussians are merged in the subsequent merge stage
[3] the variances might be “blown up”, which can have a very
detrimental effect. As we have actually observed this prob-
lem with various Gaussian mixture filters – ones that deal
with data association and ones that deal with nonlinearities –
this might well be the next big thing to tackle.

6. CONCLUSIONS

We have demonstrated how Gaussians can be split in the di-
rection of nonlinearity. In addition to that, we have shown
how multivariate Gaussian distributions can be split into mix-
tures of two and three components, respectively, and ana-
lyzed the errors introduced by the resulting Gaussian mix-
ture approximations. The effectiveness of the proposed ex-
tensions with respect to improving the accuracy of nonlinear

splitting #Gaussians
method 2 4 8 16 32 64

2 components 779 774 768 765 764 762
3 components 733 738 739 736 735 734

splitting #Gaussians
method 2 4 8 16 32 64

2 components 779 774 768 765 764 762
3 components 733 738 739 736 735 734

Table 2: MSE / track averaged over 50 runs of the split and
merge unscented Gaussian mixture filter, for splitting into
two and three Gaussians. Here, splitting was performed in
direction of the largest eigenvalue of the covariance matrix.

direction #Gaussians
of split 2 4 8 16 32 64

nonlinearity#1 935 770 688 632 621 608
nonlinearity#2 1104 825 703 628 595 573

direction #Gaussians
of split 2 4 8 16 32 64

nonlinearity#1 935 770 688 632 621 608
nonlinearity#2 1104 825 703 628 595 573

Table 3: MSE / track averaged over 50 runs of the split and
merge unscented Gaussian mixture filter, for splitting in di-
rection of the nonlinearity

tracking problems has been verified in simulations.
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