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ABSTRACT 
Real-time multimedia applications often require efficient bit-
rate reduction. This is mainly done by requantization,   
usually in the DCT domain. This work introduces theoretical 
rate-distortion analysis that allows for straightforward se-
lection of the quantization step needed to achieve a given 
bit-rate. The analysis is based on the Laplace-like distribu-
tion of DCT coefficients in the transform domain and on the 
structure of the quantizers commonly used in video and im-
age coding. We show that the proposed transcoding design 
achieves significant compression at relatively low distortion, 
while keeping the computational complexity very low, allow-
ing for real-time implementation. 

1. INTRODUCTION AND PROBLEM 
DEFINITION 

Visual communication often requires adjustment of the 
transmission bit-rate according to the bandwidth of the 
available channels, display characteristics and limitations of 
the end users. This raises the need for bit-rate reduction of 
the data stream, known as transcoding or transrating. For 
real-time applications, it is crucial that the transcoding will 
be of low computational complexity, while ensuring low 
distortion. A straightforward approach to transcoding is us-
ing quantization in various stages of image compression.  It 
can be shown that the performance of requantization de-
pends mainly on the ratio between the quantization step used 
for the initial quantization and the step used for requantiza-
tion [1], [2]. So far, however, the performance of this 
straightforward transcoding approach has not been tho-
roughly analyzed for video sequences.  
This work introduces theoretical analysis of requantization 
applied to still images and video in the DCT domain. The 
process of requantization consists of two stages. The first 
stage of quantization occurs at the source and thus cannot be 
controlled once done. The second stage of quantization is 
performed for transcoding and the quantizer can be freely 
designed. Accordingly, the focus of this work is on the anal-
ysis and design of the second stage quantizer for coded im-
ages and video, such as JPEG and MPEG. It is assumed that 
the first quantization takes place after a subband transform, 
such as DCT, has been applied to the image, block by block. 
The first stage quantizer, denoted by Q1, performs uniform 
quantization using step size q1. Alternatively, Q1 could be 
applied using a quantization matrix, multiplied by the quali-
ty factor q1. Though the analysis in this work refers to uni-

form quantization, the results apply to quantization using a 
quantization matrix as well, as shown in Section 3.   
The second stage quantizer is denoted by Q2 and the quanti-
zation step size (or quality factor) used is q2. In addition to 
Q1 and Q2, a third reference quantizer is used, denoted by 
Q2,ref. This coarse reference quantizer is used directly on the 
original coded image (not yet quantized) and also referred to 
as 'direct quantization'. The performance of the second stage 
quantizer is compared to that of the reference quantizer. 
Throughout this work two types of quantizers are used: uni-
form threshold quantizer (UTQ) and UTQ-DZ (UTQ with 
dead zone), as in [1] and [3]. UTQ is used for still images 
and intra-frames of MPEG (I), while UTQ-DZ is used for 
inter frames. For UTQ, the quantizer definitions for the in-
put x R∈  are: 

          ( ) ( )1 1 1/Qx Q x Round x q= =  

          ( )1
1 1 1Q QQ x x q−

1= ⋅           (1) 

          ( ) ( )( )1
2 1 1 1 2/Q QQ x Round Q x q−=        

          ( ) ( )2, 2/refQ x Round x q= . 
The decision and reconstruction levels (for the positive axis) 
for the UTQ are defined as        
     ( ),0 , ,0 ,0; 0.5 ; 0;i i l i i i ld d l q r r l iq= = − = = ⋅ ,        (2) 
where the decision level l of the  quantizer  of Stage i (i=1,2) 
is denoted by di,l and the reconstruction level is denoted by 
ri,l. The definitions in (2) are symmetrical for the negative 
axis.  For UTQ-DZ the definitions for the input x R∈  are 
given by: 

     ( ) ( ) ( )( )1 1 1/Qx Q x sign x Floor abs x q= = ⋅  

     ( ) ( )( )1
1 1 1 10.5Q Q QQ x x sign x q−

1= + ⋅ ⋅             (3) 

     ( ) ( ) (( )( )1
2 1 1 1 1 2/Q Q QQ x sign x Floor abs Q x q−= ⋅ )                    

     ( ) ( ) ( )( )2, 2/refQ x sign x Floor abs x q= ⋅ . 
For this quantizer, the decision and reconstruction levels (for 
the positive axis) are defined as:       
      ( ),0 , ,0 ,0; ; 0; 0.5i i l i i i ld d lq r r l iq= = = = + ⋅ .        (4) 
As shown in [1], to avoid additional distortion resulting 
from performing the quantization in two stages rather than 
applying the coarse reference quantizer directly to the origi-
nal image, the following condition should be met. 
                 ( )( ) ( )2 1 2,: refx Q Q x Q x∀ =                              (5) 
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As shown in [1] [2] and [3], a necessary condition to achieve 
(5) is that the new requantization step be a multiple of the 
first stage quantization step size, so that 

    .                                           (6)  2 1,q k q k= ⋅ ∈
The main goal of the present work is to analyze this condi-
tion and provide conclusions as to the preferred requantiza-
tion step. Based on our analysis, an efficient real-time tran-
scoding system can be easily designed, avoiding presently 
available complex approaches to transcoding. 
This paper is organized as follows. Section 2 provides theo-
retical analysis of requantization and considers the main 
rounding policies. In Section 3 experimental results are pre-
sented, and in Section 4 the work is summarized and con-
cluded.   
                  

2. RATE-DISTORTION ANALYSIS AND 
ROUNDING POLICY 

Rate-distortion analysis is often performed to evaluate a 
transcoding system. Such analysis is instrumental in the 
design of a second stage quantizer and requires developing 
rate and distortion expressions for the requantized image. 
The rate can be expressed via the entropy, while the distor-
tion can be expressed using an acceptable distortion criteria, 
such as MSE. 
Our analysis requires modeling of the probability distribu-
tion of the DCT coefficients at the input and at the output of 
the first stage quantizer, as well as at the output of the 
second stage quantizer, marked as points A, B and C respec-
tively, in Fig. 1. 
 

1Q 2Q

Figure 1: Quantization stages illustration 
 
We use the fact that the DCT coefficients at point A, before 
quantization, can be modeled using Laplace distribution [4]: 

      ( ) 0.5 xp x e λλ −
=  .                                      (7) 

At point B, after the first quantization, the DCT coefficients 
are discrete according to the representation levels of the first 
stage quantizer. The probability of each coefficient value is 
the total probability weight of the first stage quantization 
bin, represented by this value. For instance, level r1,l 
represents bin #l and has the probability weight w1,l obtained 
by integrating the Laplace distribution function over bin 
#l>0, as shown in the following equation  

  ( )
( ) ( ) ( )1 1 1

1
1,

0.5 0.5
0.5

0.5 0.5 1l
l q l q qx
l q

dxw e e λ λλλ
+ − − −−

=
−

= −∫ e        (8) 

for UTQ, and in:  
 

  

( ) ( ) ( )1 1 1

1
1,

1 10.5 0.5 1l
l q l q qx

lq
dxw e e eλ λλλ

+ − +−
== −∫

  
             (9) 

for UTQ-DZ, for x ≥ 0 , while for x < 0 the expressions are 
symmetrical. 
Accordingly, the distribution of the discrete values at point 
C has to be modeled. As a result of requantization, several 
quantization bins of the first stage quantizer are represented 

by one second-stage representation level. This happens since 
each second-stage quantization bin contains an integer num-
ber of first stage quantization bins (required to maintain (5), 
as shown in [5]) and thus the probability weight of this 
second stage representation level is the sum of probability 
weights of the first stage quantization bins inside. This is 
illustrated in Fig. 2, for the case of q2 = 4·q1, where 
          2, 1,4 1,4 1 1,4 2 1,4 3;l l l l lww w w w l+ + += 0+ + + > .       (10) 
The merging of probability weights and thus the resulting 
requantization performance depends mainly on the position 
of second stage decision levels relative to the first stage de-
cision levels. However, it is also affected by the rounding 
method of the second-stage quantizer, which is addressed in 
the next subsection. 
 
2.1 Rounding Policy Effects 
When performing division during requantization with the 
quantizer defined in (1) and (2), it is possible to round the 
value of 0.5 to 0 or 1. Let us consider an example where     
q1 = 3 and q2 = 2·q1 = 6. At the second-stage quantizer there 
are two options to quantize the value 3 (a representation 
level of the first stage quantizer) since it falls exactly on the 
decision level of the second-stage quantizer. This value 
could be quantized to either 0 or 6, according to the        
chosen rounding policy: Q2(3) = RoundRTZ(3/6) = 0, namely 
'Rounding Toward Zero' (RTZ), or Q2(3) = RoundRR(3/6) =1, 
regarded as 'Regular Rounding' (RR). Similarly, -3 could be 
quantized to 0 or -1.  
When using UTQ and q2 is selected as an even multiple of 
q1, this ambiguity occurs for every other quantization bin. 
Thus, the rounding policy of the second stage quantizer can 
significantly affect the results. When using UTQ-DZ, the 
rounding policy will have no effect, since no first step repre-
sentation level could ever collide with second step represen-
tation level, when (6) applies. If we assume that this colli-
sion ( ) does happen for some l and m, then we ob-
tain the following condition: 

1, 2 ,lr d= m

       ( ) ( )1 2 1 10.5 0.5l q mq mkq l mk q q+ = = ⇒ − = 1

l

.    (11) 
Since m,l and k are integers, the above could never hold.  
 
2.2 Bit-rate and Distortion Analysis 
The bit-rate after requantization is analyzed here as a func-
tion of k (as defined in (6)) for both rounding methods and 
quantizer types. Only integer values are considered since an 
integer ratio is required to avoid added distortion due to the 
requantization process and since it allows for detailed     
analysis regardless of the first stage quantization step q1. 
Generally, for UTQ and odd values of k, the rate and distor-
tion of both rounding methods are identical. This is con-
cluded by using distortion expressions developed for both 
rounding methods in [6] and the entropy expression in Table 
1. The reason is that when k is odd, the decision levels of the 
second-stage quantizer do not cause rounding ambiguity. 
The bit-rate is analyzed using the entropy obtained by:   

       
( ) ( )2, 2 2,logl

l
H p r p r

∞

=−∞

= − ∑ ,                        (12) 
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where r2,l  is, as before, the representation level  of quantiza-
tion bin #l of the second quantizer. For UTQ, the entropy 
expressions are derived separately for odd and even values 
of k. UTQ expressions for entropy are shown in Table 1 and 
an example of the results for both rounding methods and 
direct quantization is plotted in Fig. 3.. Here q1 = 10 and the 
Laplace parameter was λ = 0.1, an appropriate value for typ-
ical images [4]. It can be observed that for RTZ, a much 
steeper decrease in entropy occurs when k is even. This 
shows that better compression can be achieved at these 
points. As for RR, a steeper decrease in entropy occurs when 
k is odd. In general, the entropy is substantially lower for 
RTZ, showing that this method achieves better compression. 
When comparing to the direct quantization curve, i.e., apply-
ing the coarse reference quantizer directly to the original 
data, it can be observed that for the even values of k, the 
entropy of direct quantization is larger than when RTZ is 
used and smaller than the entropy obtained when RR is used. 
At the odd values, however, all three methods perform 
equally.      UTQ-DZ entropy expression (valid for all integ-
er k's and both rounding methods) is shown in Table 2. 
Similarly, expressions for distortion as a function of k were 
developed using (13), for both rounding methods. The ex-
pressions for UTQ-DZ are presented in Table 3. The UTQ 
expressions were developed in [6].  
 

( ) ( ) ( )
2, 1

2,

22
2,

1ˆ
2

l

l

d
x

l
l d

D x x f x dx x r e λλ
+∞ ∞

−

=−∞−∞

= − = −∑∫ ∫ dx (13) 

 
The expressions for rate and distortion are used to create 
theoretic rate-distortion graphs, which appear in Fig. 4 (left) 
for UTQ-DZ and Fig. 5 (left) for UTQ. For UTQ-DZ the 
behavior of the graph is the same for requantization using 
both rounding methods and for direct quantization. For UTQ 
the behavior is more interesting and is further analyzed. The 
numerical values used to create the graph in Fig. 5 appear in 
Table 4. It can be seen that: (i) RTZ usually outperforms RR 
and direct quantization, i.e., it provides lower distortion for 
the same rate. (ii) For both rounding methods, there are 
areas where lowering the rate slightly results in a substantial 
increase in distortion. Interestingly, when using RR, there is 
a point where substantially reducing the rate (from 2.26 to 
1.69 bits/pixel) decreases the distortion as well (from 58 to 
54). This is due to the way the probability weights of the 
first stage representation levels merged during requantiza-
tion. (iii) The points of intersection for all three methods are 
the odd multiples of the original step size, i.e., odd values of 
k. (iv) Generally, RR achieves the worst results. 
 

3. EXPERIMENTAL RESULTS  

The right parts of Fig. 4 and Fig. 5 show the empirical aver-
aged rate-distortion for UTQ-DZ and UTQ, respectively. For 
UTQ-DZ inter frames were used, while for UTQ still images 
were used. It can be seen that for both quantizers, the beha-
vior observed is very similar to that shown in the theoretical 
rate-distortion graphs in the left parts of Fig. 4 and Fig. 5. 

The values of rate and distortion differ in the two parts of 
Fig. 4 and Fig. 5 since one side is theoretical and the other is 
experimental. For UTQ, as mentioned earlier, RTZ provides 
better results. In addition, there are several requantization 
steps that perform poorly, increasing the distortion substan-
tially for a minor rate decrease. The numerical results are 
summarized in Table 4. For UTQ-DZ, the behavior is rather 
smooth.  
Fig. 6 shows results for requantization using a typical quan-
tization matrix and UTQ. A frame from ‘Foreman’ sequence 
is shown in Fig. 6 (top) and was first quantized using the 
quality factor q1 = 0.5 and then requantized using the re-
quantization quality factor q2 = 1. Fig. 6 (middle) shows the 
requantized frame, using RR. Fig. 6 (bottom) shows the re-
quantized frame, using RTZ. It can be observed that the bot-
tom image (RTZ) is much smoother and less noisy, has a 
higher PSNR (by almost 2 dB) and significantly lower bit-
rate. These results are consistent with the theoretical analysis 
and show the major role of the rounding method in the de-
sign of the second stage quantizer. Furthermore, this shows 
that the analysis carried out for uniform quantization can be 
applied to quantization using a quantization matrix. This can 
be readily explained by the uniform quantization applied to 
each DCT coefficient with the appropriate quantization step 
from the matrix.  
Fig. 7 shows the PSNR Vs. frame number, for 'Foreman' and 
'Bus' in CIF resolution with 'IPPPP' GOP, initially quantized 
with q1 = 0.5, and then requantized with q2 = 1, for direct 
quantization and both rounding methods. RTZ outperforms 
RR and is close to direct quantization performance (slightly 
lower PSNR at a slightly lower rate). 
 

4. CONCLUSIONS 

We have derived a rate-distortion curve of requantized im-
ages and video frames as a function of the ratio between the 
first and the second quantization steps. These expressions 
provide a useful rate-distortion function for image and video 
recompression and transcoding. This analysis allows for a 
straightforward design of the second stage quantizer used for 
bit-rate reduction. Our analysis shows that in order to 
achieve the best compression ratio, one has to requantize the 
DCT coefficients of images and intra frames using an even 
multiple of the original quantization step. To keep the distor-
tion low at these points, rounding toward zero should be 
applied. When requantizing the inter frames, any integer 
multiple of the original quantization step can be used. In all 
cases, the selection of the specific multiple should be made 
based on the rate-distortion expressions, obtained with an 
appropriate value of the Laplace parameter λ for each fre-
quency band. The requantization step could be then deter-
mined based on the required bit-rate and acceptable distor-
tion. Our new approach can be also applied to other data 
types with the appropriate distribution [7]. Our conclusion is 
that this analysis is instrumental in designing transcoding 
systems, allowing for real-time implementation due to its 
very low complexity. 
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Figure 2: Illustration of one 2nd stage quantization bin containing 
four 1st stage quantization bins. 

 
 
 
 
 
 
 
Figure 3: UTQ Theoretical entropy of requantized Laplace distri-
bution originally quantized with q1 = 10, as a function of k= q2/ q1 
for both rounding methods and direct quantization. 
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Table 1: UTQ Entropy analysis of requantized data for two rounding methods (RTZ and RR) 
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Table 2: UTQ-DZ Entropy analysis of requantized data 
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Table 3: UTQ-DZ Distortion analysis of requantized data 
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Figure 6: A frame from 'Foreman' for q1=0.5 
and q2=1 using a quantization matrix. Top: 
Original. Middle: Regular rounding, with 
PSNR=32.63dB at 1.35 bit/pixel. Bottom: 
Rounding toward zero, with PSNR=34.59dB, at 
0.83 bit/pixel.  As can be seen, Rounding toward 
zero outperforms Regular rounding. 

 

Figure 7 (Left): PSNR vs. frame number for 'Bus' 
(top) and 'Foreman'(bottom) at q1=0.5 and 
q2=2·q1=1 using a quantization matrix, for direct 
quantization and for both rounding methods. RTZ 
(avg. rate of 1.04 and 0.39 bit/pixel) outperforms RR 
(avg. rate 1.26 and 0.57 bit/pixel), and is close to 
direct quantization (at 1.09 and 0.43 bit/pixel), for 
'Bus' and' Forman', respectively.   

2

1

q
k

q
=

 

R-D function Simulation 
D R [bpp] D R [bpp] 

RTZ RR RTZ RR RTZ RR RTZ RR 
1 8 8 2.7 2.7 7 7 1.96 1.96 
2 42 58 1.74 2.26 29 43 0.90 1.67 
3 54 54 1.69 1.69 35 35 0.83 0.83 
4 86 95 1.30 1.67 55 59 0.52 0.79 
5 98 98 1.29 1.293 66 64 0.49 0.49 
6 116 120 1.1163 1.292 80 81 0.35 0.48 
7 123 123 1.1162 1.1162 90 90 0.34 0.34 

Table 4: Rate vs. distortion as a function of k. Theoretical results (left) were calcu-
lated for q1=10. Simulation results (right) are the average for 7 images, initially 
quantized with q1=10.  Note that RR performs very poorly at even values of k (in 
theory and simulation) such that k=3 outperforms k=2 (bold). 

Figure 5: UTQ rate vs. distortion for q1=10, using both rounding methods. Direct 
quantization is also shown. Left: Theoretical rate-distortion for requantized Laplace 
data with λ=0.1. Right: Experimental rate vs. distortion, averaged for 7 images. As 
can be seen, the graphs demonstrate similar behavior, with rounding-to-zero outper-
forming regular rounding. 
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Figure 4: UTQ-DZ rate vs. distortion for requantized Laplace data and inter frames, 
for q1=4, where three re-quantization methods coincide. Left: Theoretical rate-
distortion for Laplace data with λ=0.15. Right: Experimental results obtained by 
averaging 16 inter frames. As can be seen, the graphs demonstrate similar behavior. 
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