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ABSTRACT
Periodicity is an important property of speech signals. It
plays a critical role in speech communication, especially
when strong background noise is present. This paper
presents a novel framework of periodicity enhancement for
noisy speech. The enhancement operates on the linear pre-
diction error (residual) signal. The residual signal goes
through a constant-pitch time warping process and two se-
quential lapped frequency transforms, by which the periodic
component is concentrated in the first modulation band. By
emphasizing the respective transform coefficients, periodic-
ity enhancement of noisy residual signal is achieved. The
enhanced residual signal and estimated linear prediction fil-
ter parameters are used to synthesize the speech output. The
effectiveness of the proposed method is confirmed consis-
tently by various objective measures and subjective listening
tests. It is observed that the enhanced speech can restore the
harmonic structure of the original speech.

1. INTRODUCTION

Periodicity is an important property of speech signals. In
the time domain, it is defined by the repetition of signal
waveforms. In the frequency domain, periodicity is re-
flected by the appearance of strong spectral components at
equally spaced harmonic frequencies. From the perspective
of speech production, periodicity in acoustic signal is caused
by periodic vibration of vocal cords when voiced speech is
produced. It determines the pitch of speech, which is essen-
tial in speech communication. Important high-level linguis-
tic information, for examples, intonation, lexical tones, stress
and focus, is conveyed in the pitch contour of an utterance.
Periodicity also means that there exists a great deal of re-
dundancy in both the time and frequency domain. This con-
tributes to the robustness of speech communication in noisy
environments.

There have been numerous attempts to restore the peri-
odicity of noisy speech signal, with the goal of improving
perceptual quality. The approaches can be broadly catego-
rized as spectral-domain harmonicity restoration techniques
and time-domain waveform periodicity enhancement meth-
ods. Comb-filtering was a commonly used method, which at-
tenuates signal components that are not harmonics [1]. In [2],
a regeneration method was proposed to recover the harmonic
structure of original speech. In [3], harmonicity enhance-
ment was performed based on the harmonic+noise model of
speech. In recent studies, harmonicity enhancement was typ-
ically applied as a post-processing step in general speech en-
hancement systems.

There have been relatively fewer studies on the enhance-

ment of time-domain waveform periodicity. This is due to the
difficulty of separating periodic and aperiodic components in
a time-domain speech signal. In the area of hearing research,
temporal periodicity enhancement has been shown effective
in improving pitch and tone perception. The commonly used
techniques include increasing modulation depth and simpli-
fying waveforms [4]. These methods generally cause se-
vere nonlinear distortion and therefore lead to degradation
of speech quality.

In this paper, we describe a new method of periodicity
enhancement by exploiting a recently proposed speech rep-
resentation model [5]. This speech model was developed to
achieve a compact and complete representation of speech
signals. The redundancy related to waveform periodicity
is the basis of such representation. The speech model can
be used for a wide range of applications including speech
coding and prosodic modification. Our work on periodic-
ity enhancement is based on an important property of this
method, which is the effective periodic-aperiodic decompo-
sition. The decomposition is applied on the residual signal of
linear prediction (LP) analysis, which is considered to be the
primary carrier of periodicity-related information in speech.
The LP residual signal undergoes a series of transformations
in a pitch-synchronous manner. Some of the transform coef-
ficients represent the periodic component while the other co-
efficients represent the aperiodic component. Because noise
signals generally do not have the same periodicity character-
istic as speech, periodicity enhancement of noise-corrupted
speech can be achieved by adjusting the relative contribu-
tions of the periodic and aperiodic components.

In Section 2, we first review the signal transformations as
proposed in [5] and give illustrative examples of transformed
and decomposed signals. Then the principle of periodicity
enhancement is explained and some practical issues are dis-
cussed. In Section 3, the complete framework of speech pe-
riodicity enhancement is described. The problem of estimat-
ing LP parameters from noisy speech is addressed. Section
4 contains the experimental results in terms of both objective
quality measures and results of subjective listening tests.

2. TRANSFORM-DOMAIN PERIODICITY
ENHANCEMENT

Pitch or periodicity is caused by long-term dependencies in
the speech signals, which are associated with the excitation
source. It is carried primarily by the residual signal of LP
analysis of speech. On the other hand, the LP filter coeffi-
cients characterize short-term dependencies that are caused
by vocal tract resonances.

Periodic-aperiodic decomposition can be achieved on the
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LP residual signal using the approach described in [5]. A
brief review is given below.

2.1 Constant-pitch warping and lapped frequency
transforms
Let e(t) denote the LP residual signal from a voiced speech
segment. We first time-warp the signal to have a constant
pitch. We assume that the pitch track of the segment is avail-
able. Then a continuous pitch track is defined using a spline
representation. The resulting pitch track is used to re-sample
e(t) to obtain a constant-pitch signal with period P0. We write
this signal as e(ttt(τ)), where the monotonic mapping ttt maps
the constant-pitch time scale τ to the original time scale t.

If a signal segment contains both periodic and aperi-
odic components, they are concentrated in low- and high-
frequency bands, respectively. Thus, to obtain an intu-
itive representation with energy concentration, we first sep-
arate the signal e(ttt(τ))) in frequency channels. This pitch-
synchronous transform is implemented by a DCT-IV trans-
form. The window size is 2P0 with 50% overlap. For a
speech segment of K pitch-synchronous frames, the output of
this transform includes K ·P0 coefficients, denoted by f (k, l),
where k is frame (pitch-cycle) index and l = 1,2, · · · ,P0, in-
dexes the channels.

The transform that follows next is central to our algo-
rithm as it separates out the periodic component from the
signal. The periodic component of a channel is the compo-
nent that does not change significantly from one pitch cy-
cle to the next. Thus, we perform a frequency transform
on each channel. This modulation transform is implemented
by a DCT-II transform. For the lth channel, the coefficients
f (1, l), f (2, l), · · · , f (K, l) are transformed to generate K out-
put coefficients denoted by g(q, l), where q = 1,2, · · · ,K is
the modulation band index. The modulation transform is per-
formed over segments that are selected to maximize energy
concentration. The practical implementation is done as an
iterative process. Initially we start with a segment of one
single frame, on which a measurement of energy concentra-
tion is computed [6, pp.A12]. The segment length is then in-
creased by a step size of one frame, and the new energy con-
centration measurement is compared with the previous one.
If it is increased, the process goes on with segment length
further increased. If not, the length of the current segment is
determined and a new segment starts.

Fig. 1 gives an example of applying the constant-pitch
warping and transforms on a voiced speech segment. It
shows the original and warped LP residual signals, and the
output of the transforms. It is noticed that, in the transform
output, most of the energy is concentrated in the low modu-
lation bands, especially the first band.

2.2 Periodicity enhancement
In the transform domain, the coefficients of the first mod-
ulation band represent the periodic component of the sig-
nal, while the remaining coefficients describe the aperiodic
component. This can be easily understood by consider-
ing a strictly periodic signal. For such a signal, all pitch-
synchronous frames are identical and hence the results of
the pitch-synchronous transform are identical, i.e., f (i, l) =
f ( j, l) for any i, j = 1,2, · · · ,K and l = 1,2, · · · ,P0. In this
case the modulation transform for each channel is applied to
a constant data sequence, and there is only one non-zero out-
put coefficient at the first modulation band (DC). This prop-
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Figure 1: An example of constant-pitch warping and lapped frequency trans-
forms of a voiced speech segment. P0 = 68.
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Figure 2: Effect of noise on transform coefficients.
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Figure 3: Periodicity-enhanced residual and speech waveforms. The blue
solid lines are the results of enhancement while the black dashed lines are
the clean counterparts.

erty suggests that periodic-aperiodic decomposition can be
achieved by separating the low modulation band coefficients
from the others.

In the presence of additive noise, the waveform period-
icity of a speech signal is contaminated. Let us investigate
how the transform-domain coefficients are affected by noise
via an example as shown in Fig. 2. Fig. 2(a) shows the wave-
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form of a noise-corrupted speech segment, which is obtained
by adding white noise to the clean segment in Fig. 1(a). The
SNR is 5dB. Fig. 2(b) gives the LP residual signal extracted
from the noisy segment. Using the same pitch track as es-
timated from clean speech, we obtain the transform-domain
coefficients as depicted in Fig. 2(c). Comparing Fig. 2(c)
with Fig. 1(d), it is observed that the noise leads to an in-
crease in energy in the high bands. Nevertheless, there is still
a high level of energy concentration at the first modulation
band, which represents the underlying periodic component.

Based on the above analysis, we propose to restore the
periodicity of noise-corrupted speech by applying relatively
heavier weights to the transform coefficients of the lower
modulation bands and lighter weights to those of the higher
bands. Let Wq denote the weighting factor for the qth mod-
ulation band. The modified transform coefficient ĝ(q, l) is
obtained as

ĝ(q, l) = Wq ·g(q, l). (1)
Residual signal with enhanced periodicity is re-synthesized
from ĝ(q, l). In the experiments of this study, we use the
following weighting scheme,

Wq =

{ L−q+1
L

q ≤ L
0 q > L

. (2)

L is empirically set to 3. It can be seen that 0 ≤ Wq ≤ 1
for all q. The periodic component is assigned the heaviest
weight, i.e., W1 = 1. For 1 < q ≤ L, the coefficients are at-
tenuated. For q > L, the coefficients are discarded. By apply
this weighting scheme to the example segment of Fig. 2, the
enhanced residual and speech waveforms are given as in Fig.
3. It can be observed that the waveform periodicity is effec-
tively restored.

2.3 Related issues
Pitch estimation The proposed method requires the pitch
track of noise-corrupted input signal. An erroneous pitch
track would cause problems in constant-pitch warping and
affect the effectiveness of periodic-aperiodic decomposition.
A typical pitch estimation algorithm [7] has a gross pitch er-
ror rate of about 5% at 0 dB SNR, i.e., 5% of the estimated
pitch values1 differ from the true values by 10 Hz or more.

In this study, a new algorithm of robust pitch estimation
is used. The robustness is achieved by exploiting both pitch-
related spectro-temporal information in speech and prior
knowledge about pitch harmonics. Spectral peak pattern that
is computed cumulatively over successive analysis frames is
used as a robust feature for pitch estimation. The temporal
cumulation effectively suppresses the effect of noise, which
has irregularly located spectral peaks. For pitch estimation,
the observed noisy pitch feature is assumed to be a sparse
combination of clean feature exemplars. This combination
is determined via an optimization procedure, which is very
similar to the compressive sensing approaches [8]. Details of
the algorithm is given in [9]. Preliminary experimental re-
sults show that the accuracy of pitch estimation at 0dB SNR
is comparable to the noise-free case.
Segmentation and boundary smoothing In [5, 6], non-
overlapping segments were used for speech coding applica-
tions. For periodicity enhancement, we observed that there

1In this paper, the terms “pitch” and “F0” (fundamental frequency) are
used interchangeably.

Figure 4: Complete framework of speech periodicity enhancement.

were noticeable energy discontinuities at segment boundaries
of the re-synthesized signal. This is due to the use of weight-
ing factors at each individual segment. Subjective listening
revealed that the discontinuities lead to severe perceptual dis-
tortion. To alleviate the problem, we impose a certain degree
of overlapping between segments. At the synthesis stage,
signals at the segment boundaries are smoothed by overlap-
and-add with trapezoid windows.

3. COMPLETE FRAMEWORK OF SPEECH
PERIODICITY ENHANCEMENT

Fig. 4 gives the complete framework of the proposed method
of speech periodicity enhancement. Noisy speech is first
processed using conventional linear prediction error filtering
(autocorrelation based). Noisy LP residual signal e(t) is ob-
tained for subsequent periodicity enhancement as described
in Section 2. Meanwhile, a procedure for LP parameter es-
timation is carried out. The estimation aims to acquire an
estimation of the clean LP parameters from the noisy speech
input. Finally, the estimated LP parameters are used in con-
junction with the enhanced residual signal to generate the
speech output.

The problem of estimating LP parameters from noisy
speech has been studied for many years. It aims at estimating
the speech spectrum and the excitation gain. The representa-
tive approaches include noise compensation [10], codebook-
driven estimation [11], and Kalman filtering [12, 13]. In
this study, we adopt the codebook-driven approach [11] and
the iterative Kalman filtering approach [12] for evaluation.
The codebook method is data driven, where LP coefficients
are estimated by searching over trained codebooks of clean
speech and noise for a codeword pair that has the highest
probability to produce the noisy observation. In the Kalman
filter approach, LP filter coefficients are estimated iteratively.
Each frame of speech is first enhanced by the Kalman fil-
ter initialized with the LP coefficients of noisy speech. A
set of new coefficients are then estimated from the enhanced
speech. The process goes on iteratively until convergence is
reached [12].

4. EXPERIMENTS AND RESULTS

Performance of the proposed method is evaluated on two as-
pects: (1) effectiveness of periodicity enhancement of the LP
residual signal, and (2) overall performance of speech pe-
riodicity enhancement with estimated LP parameters. The
evaluation data consists of a total of 48 speech utterances
from 3 different languages: American English, Mandarin and
Cantonese. While English is used to represent western lan-
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Table 1: Performance of periodicity enhancement on LP residual signals under different input noise conditions.
Input

Speech
SNR(dB)

Residual SegHarm Residual SNR (dB)

Noisy Enhanced Noisy Enhanced
R-F0 E-F0 R-F0 E-F0

White
Noise

5 1.16 1.91 1.82 -8.10 -1.40 -1.72
0 0.86 1.71 1.62 -11.91 -4.38 -5.04
-5 0.61 1.47 1.38 -16.26 -8.16 -9.08

AR
Noise

5 0.89 1.68 1.62 -4.71 0.93 0.30
0 0.67 1.49 1.34 -8.45 -1.52 -2.04
-5 0.56 1.32 1.19 -11.9 -4.39 -5.29

mean 0.79 1.60 1.51 -10.22 -3.15 -3.81

guages, Mandarin and Cantonese are among the most rep-
resentative tonal languages, in which pitch is used to dif-
ferentiate words. There are 16 utterances (equal number
of male and female speakers) for each language. They are
taken from TIMIT (English), 863 (Mandarin) and CUSENT
(Cantonese), respectively. Mean duration of one utterance is
about 4-5 seconds. Speech activity ratio2 of the data set is
85% on average. Speech are down sampled to 8 kHz.

Reference pitch, denoted as R-F0, is obtained on
clean speech using conventional time-domain autocorrela-
tion method and the results are manually verified. Estimated
pitch, denoted as E-F0, is obtained with the algorithm as de-
scribed in Section 2.3. Twelfth-order LP analysis is applied
to obtain the residual signals. The analysis frame is 20 ms
long, with 50% overlap. For the proposed method, we ap-
plied the same weighting scheme on unvoiced segments as
well as the voiced segments.

4.1 Periodicity enhancement of LP residual signal
In the first experiment, speech signals are degraded by two
types of noise: white noise and first-order AR noise (sim-
ulating car noise [13]), at SNR of -5, 0 and 5 dB, respec-
tively. Periodicity enhancement based on R-F0 and E-F0 is
performed on the noisy LP residual signals.

We use the Mean Segmental Harmonicity (SegHarm)
[14] and the global SNR of the residual signal as the perfor-
mance indices. SegHarm measures the overall energy ratio
between the harmonic peaks and their surrounding noise in
the target signal. It is computed from all voiced segments in
the utterances. Avarage SegHarm value of the clean residual
signals is 1.72. Table 1 gives the SegHarm and global SNR
of the residual signals before and after enhancement. Signif-
icant improvements can be observed on both types of noise
at all input SNR levels. The average value of SegHarm in-
creases from 0.79 to 1.60 and 1.51, when R-F0 and E-F0 are
used respectively.

4.2 Objective quality assessment of enhanced speech
We also evaluate the quality of periodicity-enhanced speech.
The methods being tested are “codebook-driven LP param-
eter estimation [11] + periodicity-enhanced LP residual”
(CB+PE), “iterative Kalman filtering [12] + periodicity-
enhanced LP residual” (KF+PE). They are compared with
“clean LP parameters + periodicity-enhanced LP residual”
(CleanLP+PE) and the comb-filter method (CombF) [1].

2Duration of speech (excluding silence) over duration of the whole utter-
ance.

Table 2: Performance of the evaluated speech enhancement methods.

SNR
(dB)

fwSNRseg
(dB) CEP

PESQ
(MOS)

Input 0 2.43 6.19 1.56
CB 2.23 3.61 4.82 1.71
KF 1.37 2.74 5.27 1.64

CB+PE 3.38 4.40 4.15 2.41
KF+PE 1.72 3.67 4.86 2.00

CleanLP+PE 5.16 8.25 3.48 3.02
CombF 2.69 2.48 6.20 1.72

We are also interested to compare the two LP parameter es-
timation methods, i.e., “codebook-driven estimation” (CB),
and “iterative Kalman filtering” (KF), without using en-
hanced residual signals.

The speech utterances are corrupted by additive AR noise
at 0 dB SNR. E-F0 is used for residual enhancement. For
codebook-based LP parameter estimation, the speech code-
books are language-dependent. For each language, 24 utter-
ances that are different from the test data are used to train a
codebook with 2048 codewords. The size of noise codebook
is 48. It is trained with a noise signal of 2-second length.

Global SNR, frequency-weighted segmental SNR
(fwSegSNR), cepstrum distance (CEP) and the perceptual
evaluation of speech quality (PESQ) are used as quality
measures [15]. The results are shown in Table 2. It can
be seen that both approaches of LP parameter estimation
(CB and KF) can improve the speech quality to certain
extent. CB is more effective than KF. With periodicity
enhancement of residual signals, the speech quality is further
improved. The PESQ value attained by CB+PE is 2.41, as
compared to 1.71 by CB and 1.72 by CompF. The PESQ
value of CleanLP+PE, i.e., 3.02, can be considered as the
performance upper bound of the proposed approach in this
noise condition.

Fig. 5 gives an example that shows the waveform and
spectrograms of speech output enhanced by CB and CB+PE.
It can be seen that CB is useful to recover the formant struc-
ture. With the use of periodicity-enhanced residual signal,
the harmonic structure can be effectively restored. This is
especially noticeable in the high-frequency region.

4.3 Subjective quality assessment of enhanced speech
Subjective listening tests were carried out on the enhanced
speech as evaluated above. The tests are designed and con-
ducted following the procedures in [16] and [17]. Half of the
test utterances were used, i.e., 8 utterances for each language.
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Figure 5: Waveforms and spectrograms of clean, noisy, CB enhanced and
CB+PE enhanced speech (from top to bottom). Audio samples are available
at http://www.ee.cuhk.edu.hk/~fhuang/pe.html .
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Figure 6: Results of subjective listening tests.

They were randomly selected from the full test set.
A total of 12 subjects participated into the listening tests.

They include 6 native Cantonese speakers and 6 native Man-
darin speakers, who were involved in the assessment of Can-
tonese and Mandarin utterances, respectively. In addition,
all of the 12 subjects were asked to assess the English utter-
ances. Each subject was required to rate a presented signal
on [17]:
SIG: signal distortion, [5=very natural, 1=very unnatural];
BAK: background noise intrusiveness, [5=not notice-

able,1=very conspicuous and very intrusive];
OVRL: overall effect, [5=excellent, 1=bad].

The test results are given as in Fig. 6. In terms of
OVRL, the proposed method CB+PE significantly outper-
forms CombF for all of the three languages. The overall
average of OVRL scores is 3.13, as compared with 2.18 for
CombF. Both CB+PE and CombF introduce noticeable sig-
nal distortion and thus lead to lower SIG scores. CB+PE
consistently attains a high BAK score, indicating that the ef-
fect of background noise has been effectively suppressed.

5. CONCLUSION

A novel framework of speech enhancement has been de-
veloped and evaluated. We have shown that enhancement
of speech and/or suppression of noise can be effectively
achieved by processing the LP parameters and the residual
signal separately. The focus of this paper is on enhancing
the pitch-related periodicity characteristic in the residual sig-

nal. With pitch track robustly estimated from noisy speech,
the proposed method demonstrates significant improvement
in both the signal-to-noise ratio and the perceptual quality of
speech. Two previously proposed methods of LP parameter
estimation have been adopted for evaluation. Quality of en-
hanced speech can be further improved with more accurate
representation of speech spectrum and better restoration of
the unvoiced segments.
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