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ABSTRACT

This paper presents new superdirective beamforming algorithms
based on the maximum negentropy (MN) criterion for distant au-
tomatic speech recognition. The MN beamformer is configured in
the generalized sidelobe cancelerstructure, and uses the weights
derived from a delay-and-sum beamformer as thequiescent weight
vector. While satisfying the distortionless constraint in the look di-
rection, it adjusts theactive weight vectorto make the output maxi-
mally super-Gaussian.

The current paper proposes to use the weights of a superdirec-
tive beamformer as the quiescent vector, which results in improved
directivity and noise suppression at lower frequencies. We demon-
strate the effectiveness of our approach through far-field speech
recognition experiments on theMulti-Channel Wall Street Journal
Audio Visual Corpus(MC-WSJ-AV). The technique proposed in the
current paper reduces the word error rate (WER) by 56% relative to
a single distant microphone baseline, which is a 14% reduction in
WER over the original MN beamformer formulation.

1. INTRODUCTION

Microphone array processing techniques for hands-free speech
recognition have the potential to relieve users from the necessity
of donning close talking microphones (CTMs) before dictating or
otherwise interacting with automatic speech recognition (ASR) sys-
tems [1, 2].

Adaptive beamforming is a promising technique for far-field
speech recognition. A conventional beamformer ingeneralized
sidelobe canceller(GSC) configuration is structured such that the
direct signal from a desired direction is undistorted [2,§6.7.3]. Typ-
ical GSC beamformers consist of three blocks, aquiescent vector,
blocking matrixandactive weight vector. The quiescent vector is
calculated to provide unity gain for the direction of interest. The
blocking matrix is usually constructed in order to keep a distortion-
less constraint for the signal filtered with the quiescent vector. Sub-
ject to the constraint, the total output power of the beamformer is
minimized through the adjustment of an active weight vector, which
effectively places a null on any source of interference, but can also
lead to undesirablesignal cancellation[3]. To avoid the latter, many
algorithms have been developed. Those approaches could be clas-
sified into the following :
1. updating the active weight vector only when noise signals are

dominant [4],
2. constraining the update formula for the active weight vector [5],
3. blocking the leakage of desired signal components into the side-

lobe canceller by designing the blocking matrix [5, 6], and
4. using acoustic transfer functions from a desired source to micro-

phones instead of just compensating time delays [4, 6].
Those algorithms attempt to minimize the almost same criterion
based on the the second-order statistics (SOS), the total output
power while keeping the distortionless constraint.

The research leading to these results has received funding from the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement number 213850 and the Cluster of Excellence on Mul-
timodal Computing and Interaction.

We know from the field of independent component analysis
(ICA) that nearly all information bearing signals, like subband sam-
ples of speech, arenon-Gaussian [7]. On the other hand, noisy or
reverberant speech consist of a sum of several signals, and as such
tend to have a distribution that is closer to Gaussian. This follows
from thecentral limit theorem, and can be empirically verified [8].
Hence, by making the distribution of the beamformer’s outputs as
much non-Gaussian as possible, we can remove the effects of noise
and reverberation.

In [8], we proposed a novel beamforming algorithm which ad-
justed the active weight vectors so as to make the beamformer’s out-
put maximally non-Gaussian. As a measure for the degree of non-
Gaussianity we use negentropy, which is the difference between the
entropy of the output signal calculated under a Gaussian assump-
tion and that calculated under a non-Gaussian assumption. In other
words, negentropy is a measure for the amount by which the dis-
tribution of the beamformer’s output deviates from a Gaussian with
the same mean and variance. We also showed in [8] that such a
beamformer can reduce noise and reverberation without suffering
from the signal cancellation problem.

The MN beamformer proposed in [8] used the weights of a
delay-and-sum beamformer, which compensates time delays of ar-
rival of a desired speech signal to the microphone array, as the
quiescent vector. However, due to the limited aperture of the mi-
crophone array, such a delay-and-sum beamforming method cannot
suppress interference signals at low frequencies. Since the output of
the quiescent vector influences the negentropy of the beamformer’s
output, presence of noise in that output degrades the ability of the
beamformer to suppress noise or reverberation by estimating the ac-
tive weight vector based on the maximum negentropy criterion. A
superdirective beamformer alleviates this problem by having better
directivity at lower frequencies.

The balance of this paper is organized as follows. Section 2 re-
views the super-Gaussian distribution and shows the fact that the ac-
tual speech distribution is not Gaussian but super-Gaussian, which
is the main motivation for using the maximum negentropy crite-
rion. In Section 3 and Section 4, we review the definitions of the
entropy and negentropy, respectively. In Section 5, we describe the
super-directive beamformer. Section 6 describes the new maximum
negentropy beamformer in the GSC configuration. In Section 7, we
describe the results of far-field automatic speech recognition exper-
iments. Finally, in Section 8, we present our conclusions and plans
for future work.

2. MODELING SUBBAND SAMPLES OF SPEECH WITH
SUPER-GAUSSIAN PROBABILITY DENSITY FUNCTIONS

In this section we provide empirical evidence that the probability
density function (pdf) of speech is super-Gaussian. We use a gener-
alized Gaussian pdf to model the distribution of the subband speech
samples.

2.1 Generalized Gaussian pdf

The generalized Gaussian (GG) pdf is well-known and finds fre-
quent application in the blind source separation (BSS) and ICA
fields. Moreover, it subsumes the Gaussian and Laplace pdfs as
special cases. The GG pdf with zero mean for a real-valued r.v.y
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can be expressed as
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In (2), Γ(.) is the gamma function andp is the shape parameter,
which controls how fast the tail of the pdf decays. Note that the GG
with p = 1 corresponds to the Laplace pdf, and that settingp = 2
yields the Gaussian pdf, whereas in the case ofp→+∞ the GG pdf
converges to a uniform distribution.

The maximum likelihood (ML) estimation is a straightfor-
ward method for estimating parameters of pdfs. For a setY =
{y0,y1, . . . ,yN−1} of N real-valued training samples, the ML solu-
tion of the scale parameter can be expressed in [8, 9] as

σ̂ =

[
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(
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∑
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p
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Notice that the ML solution of the scale parameterσ̂ is different
from the variance in the case ofp 6= 2.

Due to the presence of the special functions, it is impossible
to solve the log-likelihood function forp explicitly. Varanasi [9]
showed, however, that there is a unique root given the scale param-
eter. Hence, we use the linear search in order to find the solution
of the shape parameter. During beamforming, the shape parameter
is fixed and negentropy described in Section 4 is maximized based
on (3).

2.2 Super-Gaussian Characteristics of Clean Speech

The Gaussian and four super-Gaussian univariate pdfs considered
are plotted in Fig. 1, where the parameters of the generalized Gaus-
sian (GG) pdf are calculated from samples of actual speech sub-
bands. From the figure, it is clear that the Laplace,K0, Γ and GG
pdfs exhibit the “spikey” and “heavy-tailed” characteristics that are
typical of super-Gaussian pdfs. This implies that they have a sharp
concentration of probability mass at the mean, relatively little prob-
ability mass as compared with the Gaussian at intermediate values
of the argument, and a relatively large amount of probability mass
in the tail; i.e., far from the mean.

Fig. 1 also shows the histogram of the real parts of subband
components atfs = 800 Hz. To generate these histograms, we used
43.9 minutes of clean speech recorded with the CTM in the devel-
opment set of the Speech Separation Challenge, Part 2 (SSC2) [1].

Fig. 2 shows histograms of real parts of subband components
calculated from clean speech and noise corrupted speech. It is clear
from this figure that the pdf of the noise-corrupted signal, which is
in fact the sum of the speech and noise signals, is closer to Gaussian
than that of clean speech. Fig. 3 shows histograms of clean speech
and reverberated speech in the subband domain. In order to produce
reverberated speech, a clean speech signal was convolved with an
impulse response measured in a room; see Lincolnet al. [1] for the
configuration of the room. We can observe from Fig. 3 that the pdf
of reverberated speech is also closer to Gaussian than the original
clean speech.

These facts would indeed support the hypothesis that seeking
an enhanced speech signal that is maximally non-Gaussian is an
effective way to suppress the distorting effects of noise and rever-
beration.

3. ENTROPY

Entropy is the basic measure of information ininformation the-
ory [7]. The entropy for a continuous r.v.Y, which is often called
the differential entropy, is defined as

H(Y) , −
∫

pY(v) logpY(v)dv= −E {logpY(v)} , (4)

wherepY(.) is the pdf ofY. The entropy of a r.v. is a measure of
the uncertainty associated with the r.v. Accordingly, large entropy
indicates that the variables contain unstructured information.

The entropy for a Gaussian r.v.Ygausscan be expressed as

H(Ygauss) = log
∣

∣

∣
σ2

Y

∣

∣

∣
+(1+ logπ) . (5)

whereσ2
Y is the variance of the r.v.s. A Gaussian r.v. has the largest

entropy among all r.v.s of equal variance [7]. Hence, a Gaussian r.v.
is, in some sense, the leastpredictableof all r.v.s., which is why the
Gaussian pdf is most often associated withnoise.

The differential entropy of the GG pdf for the real-valued r.v.y
is obtained as

HGG(y) = −
∫ +∞

−∞
pgg(ξ ) logpgg(ξ )dξ

=
1
p

+ log[2Γ(1+1/p)A(p)σ̂ ] . (6)

4. NEGENTROPY

Negentropy is frequently used in order to measure nongaussianity
in the field of ICA. Negentropy is the distance between the entropy
of Gaussian and non-Gaussian r.v.s. In this work, we use the GG
pdf for the real-valued r.v. and calculate negentropy as

J(Y) = H(Ygauss)−HGG(|Y|). (7)

whereYgaussis a Gaussian variable which has the same varianceσ2
Y

asY. Note that negentropy is non-negative, and it is minimum if
and only ifY has a Gaussian distribution.

Kurtosis is also used for measuring non-Gaussianity. The kur-
tosis criterion does not require any pdf assumption. Due to its sim-
plicity, it is widely used as a measure of non-Gaussianity. However,
the value of kurtosis might be greatly influenced by a few samples
with a low observation probability. Hyvärinen and Oja [7] noted
that negentropy was generally more robust in the presence of out-
liers than kurtosis. We also applied the maximum kurtosis criterion
to beamforming and confirmed that maximum negentropy beam-
forming is more robust for the outliers [10].

5. SUPER-DIRECTIVE BEAMFORMING

To describe super-directive beamforming, we start with the expla-
nation of the minimum variance distortionless response (MVDR)
beamforming.

The MVDR beamforming algorithm determines the optimum
weight vector that minimizes the beamformer’s output at each fre-
quency binm:

w
H(m)ΣN(m)w(m), (8)

subject to the distortionless constraint for the desired look direction

w
H(m)d(m) = 1, (9)

whered(m) is the beam-steering vector andΣN is the spatial spec-
tral matrix of noise. The well-known solution is called the minimum
variance distortionless response (MVDR) beamformer [2,§13]. The
weight vector of the MVDR beamformer can be expressed as

wMVDR(m) =
Σ

−1
N

(m)d(m)

dH(m)Σ−1
N

(m)d(m)
. (10)

The MVDR beamfomers would attempt to null out any inter-
fering signal, but are prone to the signal cancellation problem [3]
whenever there is an interfering signal that is correlated with the
desired signal. In realistic environments, interference signals are
highly correlated with a target signal since the target signal is re-
flected from hard surfaces such as walls and tables. Therefore, the
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Figure 1: Histogram of real parts of sub-
band components and the likelihood of
pdfs.
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Figure 2: Histograms of clean speech and
noise corrupted speech in the subband do-
main.
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Figure 3: Histograms of clean speech and
reverberated speech in the subband do-
main.

adaptation of the weight vector is usually halted whenever the de-
sired source is active.

Instead of using noise observations, we can model noise fields.
Assuming that the noise field is spherical isotropic or diffuse, the
spatial spectral matrix of noiseΣN can be replaced with the coher-
ence matrixΓN. The(i, j)-th component of the coherence matrix
can be expressed as

ΓN i j (m) = sinc

(

2πdi j fs
c

m
M

)

, (11)

wheredi j is the distance between thei-th and j-th elements of the
array, fs is the sampling frequency,c is the sound speed andM is
the number of subbands. Now, we can express the weights of the
super-directive beamformer as

wSD(m) =
Γ
−1
N

(m)d(m)

dH(m)Γ−1
N

(m)d(m)
. (12)

The beamformer which optimizes the directivity factor with the ra-
tio of the wavelength to the distance between the sensors is termed
thesuper-directive beamformer.

Figure 4 shows the beam patterns of the super-directive and
delay-and-sum beamformers as a function of the azimuth and fre-
quency, where the look direction is 0 radian. It is clear from Figure 4
that the delay-and-sum beamformer is unable to suppress interfer-
ence signals at low frequencies while the super-directive beam-
former can form a sharp beam for the look direction.

Additional weight is typically added to the main diagonal of
ΓN in order to avoid excessively large sidelobes in the beam pat-
tern and the attendant non-robustness [2,§13]. The same effect can
be also obtained by dividing the non-diagonal elements instead of
adding diagonal elements [11,§2]. In this work, we divide non-
diagonal elements by 1.01.

Notice that the coherence matrix of the super-directive beam-
former is decided by the geometry of the microphone array only
and does not suffer the signal cancellation problem.

6. SUPER-DIRECTIVE BEAMFORMING BASED ON THE
MAXIMUM NEGENTROPY CRITERION

Consider a subband beamformer in the GSC configuration [2,
§13.7.3], as shown in Fig. 5. The output of our beamformer for
a given subbandm can be expressed as

Y(k,m) = (wSD(m)−B(m)wa(m))H
X(k,m), (13)

wherewSD(m) is thequiescent weight vectorfor a source,B(m) is
theblocking matrix, wa(m) is theactive weight vector, andX(k,m)
is the input subbandsnapshot vectorat framek.

In contrast to conventional algorithms, the super-directive
beamformer’s weights expressed in (12) are used as thequiescent
weight vector. In this work, we consider two kinds of orthogonal

Figure 4: Beam patterns of the super-directive and delay-and-sum
beamformers.
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Figure 5: Schematic of the proposed GSC beamformer.

conditions for blocking matrices:BH(m) ·d(m) = 0 (type1) and
B

H(m) ·wSD(m) = 0 (type2).
Both of them can keep the distortionless constraint for the look

direction. However, the areas which can be controlled by the side-
lobe canceler are different. This orthogonality implies that the dis-
tortionless constraint will be satisfied for any choice ofwa. The
blocking matrix can be calculated with an orthogonalization tech-
nique such as the modified Gram-Schmidt, QR decomposition or
singular value decomposition [12]. In this work, we used the mod-
ified Gram-Schmidt orthogonalization technique. While the active
weight vectorwa is typically chosen to minimize the variance of the
beamformer’s outputs which leads to the undesired signal cancella-
tion, here we will develop an optimization procedure to find thatwa
which maximizes the negentropyJ(Y) described in Section 4.

In conventional GSC beamforming, theregularization termis
often applied in order to penalize large active weight vectors, and
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thereby improve robustness by inhibiting the formation of exces-
sively large sidelobes [2,§13.3.8]. Such a regularization term can
be applied in the present instance by defining the modified opti-
mization criterion

J (Y;α) = J(Y)−α‖wa‖
2 (14)

for some realα > 0. In our previous work [8], we did not observe a
significant effect of parameterα . Accordingly, we setα = 0.01 in
this work which provided the best result in [8].

For the experiments described in Section 7, subband analysis
and synthesis were performed with a uniform DFT filter bank based
on the modulation of a single prototype impulse response [13],
which was designed to minimize each aliasing term individually.
Beamforming in the subband domain has the considerable advan-
tage that the active sensor weights can be optimized for each sub-
band independently, which provides a tremendous computational
saving with respect to a time-domain filter-and-sum beamformer
with filters of the same length on the output of each sensor.

6.1 Estimation of Active Weights under the Generalized Gaus-
sian pdf

Due to the absence of the close-form solution, we resort to the nu-
merical optimization algorithms such as the conjugate gradients al-
gorithm in order to obtain the active weight vectors. In this section,
we omit the frequency indexm for the sake of simplicity.

In order to calculate the negentropy, we first need the variance
of the beamformer outputsY(k). Substituting (13) into the defini-
tion σ2

Y = E {Y Y∗} of variance, we find

σ2
Y = (wSD−Bwa)

H
ΣX (wSD−Bwa) , (15)

whereΣX = E {XX
H} is the covariance matrix of the input snap-

shot vectors.
In order to apply the conjugate gradients algorithm, we must

derive an expression for the gradient. By substituting (5) and (6)
into (14) and taking the partial derivative on both sides while hold-
ing the shape parameter fixed, we obtain

∂J (Y;α)

∂wa
∗

=−
1
K

K−1

∑
k=0

{

1

σ2
Y

−
p|Y(k)|p−2

2|A(p)σ̂ |p

}

B
H
X(k)Y∗(k)−αwa.

(16)
whereσ̂ is calculated with (3).

Based on (15) through (16), a numerical algorithm for optimiz-
ing the active weight vector can be implemented.

7. EXPERIMENTS

We performed far-field automatic speech recognition (ASR) ex-
periments on theMulti-Channel Wall Street Journal Audio Visual
Corpus(MC-WSJ-AV) from theAugmented Multi-party Interaction
(AMI); see Lincoln et al. [1] for the detail of the data collection ap-
paratus. The room size is 650 cm× 490 cm× 325 cm and the rever-
beration timeT60 was approximately 380 millisecond. In addition to
reverberation, some recordings include significant amounts of back-
ground noise such as computer fan and air conditioner noise. The
far-field speech data was recorded with two circular, equi-spaced
eight-channel microphone arrays with diameter of 20cm. Addition-
ally, the close talking headset microphone (CTM) is used for each
speaker. The sampling rate of the recordings was 16 kHz. As the
data was recorded with real speakers in a realistic acoustic environ-
ment and not artificially convolved with measured room impulse
responses, the positions of the speakers’ heads as well as the speak-
ing volume vary even though the speakers are largely stationary.
Indeed, it is exactly this behavior of real speakers that makes work-
ing with data from corpora such as MC-WSJ-AV so much more
challenging than working with data that was played through a loud
speaker into a room, not to mention data that wasartificially con-
volved. In thesingle speaker stationaryscenario of the MC-WSJ-
AV, a speaker was asked to read sentences from six positions, four
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Figure 6: A block chart of the distant speech recognition system.

seated around the table, one standing at the white board and one
standing at presentation screen.

Our test data set for the experiments contains recordings of
10 speakers where each speaker reads approximately 40 sentences
taken from the 5,000 word vocabulary Wall Street Journal (WSJ)
task. It gives a total of 352 utterances which correspond to 39.2 min-
utes of speech. There are a total of 11,598 word tokens in the refer-
ence transcriptions. The test data does not include training data.

Figure 6 illustrates our distant speech recognition system for
experiments. Prior to beamforming, we first estimated the speaker’s
position with theOrion source tracking system [14]. Based on the
average speaker position estimated for each utterance, utterance-
dependent active weight vectorswa were estimated for a source.
The active weight vectors for each subband were initialized to zero
for estimation. Iterations of the conjugate gradients algorithm were
run on the entire utterance until convergence was achieved. Zelinski
post-filtering [15] was performed after beamforming. The param-
eters of the GG pdf were trained with 43.9 minutes of speech data
recorded with the CTM in the SSC development set. The training
data set for the GG pdf contains recordings of 5 speakers.

We performed four decoding passes on the waveforms obtained
with each of the beamforming algorithms described in prior sec-
tions. The details of our ASR system used in the experiments are
written in [8]. Each pass of decoding used a different acoustic
model or speaker adaptation scheme. For all passes save the first
unadapted pass, speaker adaptation parameters were estimated us-
ing the word lattices generated during the prior pass, as in [16]. A
description of the four decoding passes follows:

1. Decode with the unadapted, conventional ML acoustic model
and bigram language model (LM).

2. Estimate vocal tract length normalization (VTLN) [17] param-
eters and constrained maximum likelihood linear regression pa-
rameters (CMLLR) [18] for each speaker, then redecode with the
conventional ML acoustic model and bigram LM.

3. Estimate VTLN, CMLLR, and maximum likelihood linear re-
gression (MLLR) [19] parameters for each speaker, then rede-
code with the conventional model and bigram LM.

4. Estimate VTLN, CMLLR, MLLR parameters for each speaker,
then redecode with the ML-SAT model and bigram LM.

Table 1 shows the word error rates (WERs) for every beam-
forming algorithm. As references, WERs in recognition experi-
ments on speech data recorded with the single distant microphone
(SDM) and CTM are described in Table 1.

It is clear from Table 1 that the best recognition performance,
WER 12.1%, is obtained by super-directive beamforming based on
the maximum negentropy criterion with the orthogonal condition
B

H(m) ·wSD(m) =0 (SD-MN BF (type2)). It is also clear from Ta-
ble 1 that the super-directive beamforming algorithm with the other
orthogonal conditionBH(m) ·d(m) = 0 (SD-MN BF (type1)) pro-
vides the second best recognition performance, WER 12.4%

It can be seen from Table 1 that conventional maximum beam-
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Table 1: Word error rates for each beamforming algorithm after
every decoding pass.

Beamforming Pass (%WER)
Algorithm 1 2 3 4
D&S BF 79.0 38.1 20.2 16.5

MVDR BF 78.6 35.4 18.8 14.8
SD BF 71.4 31.9 16.6 14.1

GEV BF 78.7 35.5 18.6 14.5
Conventional MN BF 75.1 32.7 16.5 13.2
SD-MN BF (type1) 74.1 30.8 15.2 12.4
SD-MN BF (type2) 74.9 32.1 15.4 12.1

SDM 87.0 57.1 32.8 28.0
CTM 52.9 21.5 9.8 6.7

forming algorithm (Conventional MN BF) can provide the bet-
ter recognition performance than the other traditional beamform-
ing methods, the delay-and-sum beamformer (D&S BF), super-
directive beamformer (SD-BF) and the minimum variance distor-
tionless response (MVDR) beamformer. Notice MVDR beamform-
ing algorithms require speech activity detection in order to avoid the
signal cancellation. For the adaptation of the MVDR beamformer,
we used the first 0.1 and last 0.1 seconds in each utterance data
which contain only background noise. Again, in contrast to conven-
tional beamforming methods, our algorithm does not need to detect
the start and end points of target speech since the proposed method
can suppress noise and reverberation without the signal cancellation
problem.

Table 1 also shows the recognition results obtained with the
generalized eigenvector beamformer (GEV BF) proposed by E.
Warsitz et al. [6]. It achieved slightly better recognition perfor-
mance than the MVDR beamformer. In this task, the transfer func-
tion from the sound source to the microphone array changes in time
due to movements of the speaker’s head. Moreover, it is difficult
to determine whether or not the signal observed at any given time
contains both speech and noise components in each frequency bin,
which is required to estimate the transfer function. Due to these dif-
ficulties, the performance of the GEV beamformer is limited in re-
alistic environments. It is worth noting that the best result of 12.1%
in Table 1 is significantly less than half the word error rate reported
elsewhere in the literature on this far-field ASR task [1].

8. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed novel super-beamforming algo-
rithms based on maximizing negentropy. The proposed methods do
not exhibit the signal cancellation problems typically seen in con-
ventional adaptive beamformers. We also evaluated the beamform-
ing algorithms through a set of far-field automatic speech recogni-
tion experiments on the data captured in realistic acoustic environ-
ments and spoken by real speakers. In these experiments, the super-
directive beamformer with the maximum negentropy criterion pro-
vided the best ASR performance.

We plan to develop an on–line version of the beamforming al-
gorithm presented here. This on–line algorithm will be capable of
adjusting the active weight vectorswa with each new snapshot in
order to track changes of speaker position and movements of the
speaker’s head during an utterance.
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