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ABSTRACT 

This paper presents a computationally efficient learning-

based super-resolution algorithm using k-means clustering 

and detail enhancement. Conventional learning-based su-

per-resolution requires a huge size of dictionary for reliable 

performance, which brings about a tremendous memory cost 

as well as a burdensome matching computation. In order to 

overcome this problem, the proposed algorithm significantly 

reduces the size of the trained dictionary by properly clus-

tering similar patches at the learning phase. Simulation 

results show that the proposed algorithm provides superior 

visual quality to the conventional algorithms, while needing 

much less computational complexity. 

1. INTRODUCTION 

Image interpolation is a key technology to display high qual-

ity up-scaled images on cutting-edge digital consumer appli-

cations such as high-definition television (HDTV), digital 

still camera (DSC), and digital camcorder. For several dec-

ades, a lot of single image interpolation algorithms have 

been developed in the literature. They can be classified into 

three categories: interpolation-based, reconstruction-based 

and super-resolution approaches. Firstly, the interpolation-

based methods [1, 2] are computationally light and have 

simple structure in comparison with the others. However, 

they suffer from blurring and jagging artifacts in diagonal 

edges. Even the edge preserving interpolation methods as in 

[3-6] have a difficulty in synthesizing fine details. Secondly, 

reconstruction-based methods [7, 8] produce high resolution 

image under the constraint that the smoothed and down-

sampled version of the reconstructed high resolution image 

is close to the input low resolution image. For example, 

back-projection algorithm iteratively minimizes the recon-

struction error. But, those algorithms rarely avoid jagging 

and ringing artifacts along the strong edges. Finally, so-

called super-resolution (SR) algorithms [9-13] have been 

developed as the most promising approach.  

A typical SR image reconstruction makes use of signal 

processing techniques to obtain a high resolution (HR) im-

age from multiple low-resolution (LR) images [9]. In gener-

al, success of such SR schemes depends on existence of sub-

pixel motion between adjacent LR images and accurate sub-

pixel estimation. However, sub-pixel motion estimation 

among neighbor LR images requires not only huge compu-

tational cost, but also its accuracy is not guaranteed in cer-

tain environments. In order to solve the above-mentioned 

problem, a lot of single image-based SR methods have been 

devised, e.g., example-based or learning-based SR algo-

rithms [10-13]. They exploit the prior knowledge between 

the HR and its corresponding LR examples through so 

called learning process. Most example-based SR algorithms 

usually employ a dictionary composed of a large number of 

HR patches and their corresponding LR patches. The input 

LR image is split into either overlapping or non-overlapping 

patches. Then, for each input LR patch, either one best-

matched patch or a set of the best-matched LR patches are 

selected from the dictionary. The corresponding HR patches 

are used to reconstruct the output HR image. However, most 

of the existing algorithms are so-called ‘searching and past-

ing’ approaches, and are therefore computationally intensive 

in finding the best match of LR–HR patch from a huge dic-

tionary. Furthermore, best-matched but incorrect patches 

will seriously degrade the reconstruction results. 

This paper achieves fast image super-resolution by reduc-

ing the size of trained dictionary. At the learning phase, the 

number of LR-HR patch pairs in dictionary is noticeably 

reduced by grouping similar LR patches using K-means 

clustering. At the synthesis phase, each input LR patch is 

compared with the candidate LR patches in the dictionary 

one-by-one. So, one best-matched patch is selected from the 

dictionary. Finally, the corresponding HR patch is used to 

reconstruct the output HR patch along with additional post-

processing for detail enhancement. Thus, the reduced dictio-

nary size makes it possible to significantly speed up SR 

processing and save the memory cost, while providing rea-

sonable visual quality. 

2. LEARNING-BASED SUPER-RESOLUTION 

Figure 1 describes the basic concept of learning-based su-

per-resolution that is generally composed of two phases: 

Off-line learning phase and on-line synthesis phase. At the 

learning phase, the training data, i.e., dictionary consisting 

of LR and HR patches is constructed. The LR and HR patch 

pairs are obtained from various training images. During the 

synthesis phase, the input LR image is super-resolved by 

using the dictionary. For each LR patch in the input image, 

its nearest neighbor LR patches are explored from the dic-

tionary. The high frequency components of the input LR 

patch are synthesized using the best matched LR patches.  
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Fig. 1. Conventional learning-based super-resolution. 

Freeman et al. [10] embedded two matching criteria into 

a Markov network. One is that the LR patch from the dic-

tionary should be similar to the input observed patch, while 

the other criterion is that the contents of the corresponding 

HR patch should be consistent with its neighbors. Chang et 

al. [12] presented a neighbor embedding-based SR algo-

rithm which assumes that generation of a high-resolution 

image patch depends on multiple nearest neighbors in the 

dictionary. The algorithm finds the optimal reconstruction 

weights of the nearest neighbor patches and then estimates 

a proper HR patch by applying the weight to the corres-

ponding HR patches. 

The performance of those learning-based SR algorithms 

highly rely on matching accuracy of an input LR patch with 

candidate LR patches in the dictionary. In order to improve 

the accuracy of matching, a sufficient number of LR-HR 

patch pairs must be included in the dictionary. Usually, 

existing learning-based SR methods require hundreds of 

thousands of training examples for reliable performance. 

However, such a dictionary size causes tremendous memo-

ry cost for storing the training samples as well as awfully 

large computational complexity in matching process. 

Therefore, it makes conventional learning-based SR im-

practical in implementation and restrictive in applications. 

In order to overcome this problem, we propose a fast learn-

ing-based SR algorithm with reduced dictionary based on 

K-means clustering. 

3. THE PROPOSED ALGORITHM 

The proposed algorithm accomplishes fast HR image recon-

struction without degradation by reducing dictionary size at 

the learning phase. Figure 2 describes the overview of the 

proposed algorithm. The learning phase of the proposed 

algorithm includes pre-processing, patch extraction, diction-

ary size reduction, and ordinary dictionary generation steps. 

In addition, the residue dictionary is designed to compensate 

for some high frequency (HF) components lost during dic-

tionary size reduction. The synthesis phase is composed of 

pre-processing, patch extraction, HF synthesis using ordi-

nary dictionary, and residual HF synthesis using residue 

dictionary. 
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Fig. 2. The proposed algorithm. 

3.1 Learning Phase 1: Patch Extraction 

Prior to learning process, training images should be ap-

propriately pre-processed to achieve effective dictionary 

construction (see Figure 3). Firstly, each HR image IH is 

blurred and sub-sampled to generate a LR image IL. And 

then, IL is again up-scaled using simple linear interpola-

tion such as bi-linear interpolation or cubic convolution 

to produce an image IUP having the same resolution as IH. 

The dictionary should possess various HF details lost by 

image degradation process and specific features to index 

them. The HF image IHF is obtained by subtracting IUP from 

IH, and mid frequency (MF) image IMF stands for high pass 

filtered version of IUP. IMF is employed as the features for 

indexing. Note that the HF layer IHF is the target information 

to be recovered by the proposed algorithm. They indicate lost 

HF and MF layers for predicting them, respectively. As a 

result, we extract and store HR and LR patches from IHF and 

IMF, respectively. Those patches are properly overlapped with 

neighbour patches for local smoothness. Without loss of gen-

erality, we assume that the relationship between IHF and IMF is 

independent of the local image contrast. So, we normalize the 

contrasts of LR and HR patches by dividing them by the en-

ergy of the LR patch. Here, the energy stands for the L1-norm.   

Finally, so-called primitive patches including edges or tex-

tures are chosen and they only belong to the dictionary. In 

other words, the proposed synthesis may be applied only for 

the primitive regions. Maximum response filter [15] is used 

to extract primitives. 

 

3.2  Learning Phase 2: Dictionary Size Reduction 

Now, we need to effectively reduce the number of LR-HR 

patch pairs in the dictionary so as to mitigate memory cost 

and computational burden in synthesis. This process is very 

significant in that the number of training examples in the 

dictionary generally dominates the performance of learn-

ing-based SR. Most of all, the small number of the samples 

can improve practicality of the proposed SR algorithm. 

 

Fig. 3. Pre-processing for dictionary construction. 
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Fig. 4. Dictionary size reduction. 

So, we group adjacent LR-HR patch pairs into a single 

patch pair. We adopt K-means clustering to gather similar 

patches. Figure 4 illustrates this clustering process. LR 

patches which are close each other in terms of L2-norm 

distances are clustered into a single group and similarly the 

corresponding HR patches are clustered. Finally, the center 

points of each cluster become new LR and HR patches be-

longing to the ordinary dictionary. In practice, we can de-

termine K considering memory cost and computational 

complexity. 

 

3.3 Learning Phase 3: Residue Dictionary Design 

The above-mentioned dictionary size reduction sometimes 

causes blurring artifact because HF components can be wea-

kened during averaging HR patches. Kim et al. showed that 

if the residue patch, i.e., the difference between the actual HR 

and estimated HR patches is well-learned, the learned dictio-

nary of residues may provide improved visual quality. So, in 

order to compensate for lost HF components, we employ 

additional post-processing where a proper residue patch for 

each LR patch is explored from the learned residue dictio-

nary and it is added to the HF patch synthesized using the 

ordinary dictionary (see Fig. 2). Figure 5 describes the train-

ing procedure to construct so-called residue dictionary. Note 

that the training images for residue dictionary are different 

from those used for ordinary dictionary. Firstly, the HF and 

MF images are generated from pre-processing. Next, the best 

matched MF patch to each training MF patch is found with 

its corresponding HF patch. Then, the HF residue patches 

between the original HF patches and the estimated HF 

patches are produced. 

Similarly, the MF residue patches between the input 

MF patches and the matched MF patches in the ordinary 

dictionary are produced. Finally, the MF and HF residue 

patches are clustered at the same fashion as subsection 

3.2, and the residue dictionary is finally obtained. 
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Fig. 5. Construction of residue dictionary. 
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Fig. 6. Synthesis phase. 

3.4 Synthesis Phase 

The input LR image is first up-scaled using bi-linear inter-

polation, and then LR patches are extracted from MF layer 

of the input image as in the learning phase. Each input LR 

patch is compared with the candidate LR patches in the 

ordinary dictionary to find the best match in L2-norm dis-

tance. Note that the proposed algorithm selects the first 

nearest neighbor patch only unlike the conventional learn-

ing-based SR algorithms using multiple nearest patches 

[13]. In our algorithm, the nearest neighbor patch may cor-

respond to the average of multiple adjacent patches because 

similar patches are already clustered in the learning phase. 

Therefore, even though a single best-matched patch is used 

for HF synthesis, we can obtain a similar effect to synthesis 

using multiple nearest patches as in [13]. 

Next, the HR patch corresponding to the best matched 

LR patch is de-normalized by multiplying with the energy 

of the input LR patch. This process is applied to all the in-

put patches. Only for pixels in overlapped regions, averag-

ing is performed. Finally, we obtain a synthesized HR im-

age by adding the high frequency image I’HF to the initially 

up-scaled image IUP (see Figure 6). Note that the input to 

the residue dictionary is the difference between the input 

LR patch and the best-matched LR patch chosen from the 

ordinary dictionary. 

 

 

Fig. 7. 16 training images (upper 16) and two test images (lower). 
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(a)                            (b) 

    
(c)                            (d) 

Fig. 8.  A part of up-scaled images of lena using 10,000 training 

examples (a) original, (b) bi-cubic (c) Fan’s (d) proposed. 

4. EXPERIMENTAL RESULTS 

In order to fairly evaluate the performance of our algorithm, 

we compared the proposed algorithm with bi-cubic interpo-

lation and Fan’s algorithm, i.e., one of existing SR algo-

rithm [13] for various test images. We employed four well-

known 512512 still images: lena, pirate, barbara, and 

baboon, and two 500333 images: flower and bee (see low-

er two image of Figure 7). For training, we used 16 digital 

camera images of 500333 (also see Figure 7) downloaded 

from http://www.the-digital-picture.com/Gallery/. 

This paper considered a scaling ratio of 1/2. So, the LR 

images were produced from the corresponding HR images 

by using anti-aliasing filtering and down-sampling. The 

patch size was set to 77 and the patches were overlapped 

every 4 pixels. Initial ordinary dictionary was constructed 

with about 100,000 primitive patch pairs extracted from the 

upper eight training images in Fig. 7. Then, we reduced the 

size of the initial dictionary by 1/10 and 1/20, respectively 

as in subsection 3.2. Here, we utilized bilinear interpolation 

and Laplacian filter for initial up-scaling and high pass fil-

tering, respectively. The residue dictionary was learned 

using lower eight images in Fig. 7. The dictionary size was 

set to a half of the ordinary dictionary size so as to reduce 

the memory cost. Also, we restricted the number of itera-

tion of K-means clustering to 10 as a termination condition. 

Table 1. PSNR comparison [dB]. The numbers in parenthesis 

indicates the reduction ratios of the dictionary size.  

Test im-

ages 

bi-

cubic 

Fan’s 

(1/20) 

Fan’s 

(1/10) 

Proposed 

(1/20) 

Proposed 

(1/10) 

lena 33.15 34.35 34.46 34.89 34.86 

barbara 24.89 25.18 25.22 25.33 25.32 

baboon 24.25 24.64 24.69 24.91 24.90 

pirate 30.34 31.20 31.32 31.68 31.72 

flower 32.43 33.67 33.73 34.37 34.50 

bee 28.23 29.16 29.36 29.68 29.70 

 
(a)                              (b) 

 
(c)                              (d) 

Fig. 9.  Up-scaled images of flower image using 10,000 training 

examples (a) original (b) bi-cubic (c) Fan’s (d) proposed. 

 
(a)                     (b)                     (c)                     (d) 

Fig. 10. Magnified images of the red box in Fig. 9 (a) original (b) 

bi-cubic (c) Fan’s (d) proposed. 

 

 
(a)                     (b)                     (c)                     (d) 

Fig. 11. Results for a part of bee image in Fig. 7 (a) original (b) bi-

cubic (c) Fan’s (d) proposed. 

 

Actually, in order to store 100,000 patch pairs in dictio-

nary, the proposed algorithm requires a large memory size 

of about 15MBytes (MB). Note that our algorithm reduces 

such a huge dictionary size up to 1.5MB (1/10) or 0.75MB 

(1/20). On the other hand, we obtained the dictionary for 

Fan’s algorithm by regularly sampling the same number of 

LR-HR patch pairs as our algorithm. As a result, the total 

size of dictionary of the proposed algorithm is equivalent to 

that of Fan’s algorithm.  

Table 1 shows PSNR comparison results for various test 

images. For reduction ratio of 1/10, the proposed algorithm 

provides higher PSNRs of 2 dB than bi-cubic at maximum 

for flower image. For the same reduction ratio, the proposed 

algorithm shows higher PSNRs of about 0.8 dB than Fan’s 

algorithm for flower image. Note that even when the dictio-

nary size becomes much smaller, i.e., reduction ratio of 

1/20, the proposed algorithm still maintains higher PSNRs 

than the bi-cubic and Fan’s algorithm.  

Figure 8 shows the interpolated images of lena when the 

dictionary size is only 10,000. We can observe that the pro-

posed algorithm provides better visual quality than the bi-

cubic and Fan’s algorithm. Note that Fan’s algorithm shows 

some annoying artifacts in diagonal edge due to mismatch-

ing of LR patches as the dictionary size decreases. Also, we 
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can see such artifacts in Figures 9, 10 and 11. Note that the 

proposed algorithm not only provides much better details 

than the previous schemes, but also shows high visual qual-

ity close to original images in Fig. 10 and Fig. 11. 

5. CONCLUDING REMARKS 

This paper proposed a fast image super-resolution algo-

rithm which reduced the size of trained dictionary with mi-

nimal performance degradation. At the learning phase, the 

number of sample patch pairs in dictionary is noticeably 

reduced by grouping similar patches using K-means cluster-

ing. At the synthesis phase, one best-matched patch for 

each input low resolution patch is selected from the dictio-

nary. Finally, the corresponding high frequency patch is 

used to reconstruct the output high resolution patch. Thus, 

the proposed algorithm realizes fast image super-resolution 

with the reduced dictionary size, while providing reasona-

ble visual quality. 
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