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ABSTRACT

In this study, we analyse sensitivity of the likelihood ratio
(LR) p.d.f with respect to the residual temporal correlation of
antenna training samples, caused by non-rectangular band-
pass filters and over-sampling. This temporal correlation
causes deviation of the actual LR p.d.f. from the theoret-
ical one derived for independent (Gaussian) training sam-
ples. This in turn affects performance of “expected likeli-
hood” detection-estimation techniques. This paper outlines
methodologies for correcting for this temporal correlation,
allowing for the application of expected likelihood, and vali-
dates the methods using multichannel receiver data collected
by the Australian OTHR JORN facility.

1. INTRODUCTION

In [1, 2, 3] we suggested an “expected likelihood” (EL) ap-
proach for detection-estimation of a number of sources im-
pinging upon an M-element antenna array. EL operates by
directly examining, for a set of estimated parameters that
uniquely specify the M-variate spatial covariance matrix, the
likelihood ratio (LR) of the reconstructed covariance matrix
relative to the input data. EL treats the estimated param-
eters as appropriate if the LR of the reconstructed model
is within the range of LR values expected for the true (ac-
tual) covariance matrix and operates in the practical circum-
stances where the true covariance matrix is not known a pri-
ori, but the p.d.f. of the LR values for that unknown true
solution can be determined nonetheless. More specifically,
for independent identically distributed (i.i.d) training sam-
ples with (complex) Gaussian p.d.f., this LR distribution can
be shown to be exhaustively described by just the antenna di-
mension M and the number of i.i.d. training samples, N;;4,
both of which are known a priori [3]. This p.d.f may be pre-
calculated analytically (through a fairly complex closed-form
solution given in [1]), or more conveniently via a single up-
front Monte-Carlo simulation. The p.d.f of this LR is highly
dependent on the extent to which the input data is i.i.d., and
unfortunately, in practice, antenna output signals are never
ideally independent.

For real-world systems, to make antenna outputs be fully
temporally i.i.d., the bandpass filters (at least) of the multi-
channel receivers must be ideally rectangular with sample
rate accurately equal to the Nyquist rate. This is often an
impractical approach, even in theory. Radar systems, for ex-
ample, usually are subject to stringent out-of-band emission
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control which mandates a taper on the transmitted waveform,
and this taper is often reproduced in receive bandpass filters
during the waveform correlation process. Moreover, such
systems usually operate with some over-sampling in order
to avoid spectral aliasing. In this configuration, even internal
noise samples are never ideally independent. The impact of
training data temporal correlation on the structure and perfor-
mance of different detection and direction of arrival (DOA)
estimation techniques, has been considered in a number of
papers (see, for example, [S]). Note that in most such studies,
internal noise samples are still treated as i.i.d, while temporal
correlation of source signals is considered.

The focus of this study is rather different. Within the
EL approach, a decision regarding any estimated parameters
Q,;, with uniquely reconstructed covariance matrix R(Qm)
is taken based on comparison of the actual likelihood ratio
LR[R(Q,] with the theoretical p.d.f. pre-calculated for the
true covariance matrix Ry, LR[Ro]. Therefore, if the residual
temporal correlation of the training data significantly mod-
ifies the p.d.f. of LR[Ry] relative to the one calculated as-
suming an i.i.d-model, then the performance of the expected
likelihood detection-estimation approach may be degraded.
In this study, we analyse these modifications to the p.d.f. for
the LR[Ry), caused by non-rectangular shape of bandpass fil-
ters and oversampling. In most DOA estimation techniques,
the accurate description of the additive (internal) white noise
is crucial, and in some applications with broadband signals
impinging upon an antenna array, the power spectrum of all
signals as well as the internal noise power spectrum are spec-
ified by bandpass filters and over-sampling rate. While it is
clear that for N — oo, the equivalent number of i.i.d. training
samples may be specified as N;; = TAF, where T is the ob-
servation interval and AF is the actual bandwidth of the pass-
band filter, this is of limited assistance in the pre-asymptotic
domain, where EL is specifically designed to operate [3].
The sensitivity of different equivalent models that account
for sample temporal correlation needs to be carefully evalu-
ated with finite N. In this paper, we introduce our results of
this study conducted with the aid of real internal noise data
collected at the output of the multiple antenna receivers as-
sociated with the Australian JORN OTH Radar in Laverton,
WA [4].

1063



2. PROBLEM FORMULATION

The traditional theoretical description of the detection-
estimation problem addressed by stochastic (unconditional
maximum likelihood (SML), is that a number of N;;; inde-
pendent identically distributed complex Gaussian M-variate
training samples x;, j = 1,...,N;;4 are observed at the output
of an M-element antenna array. In that case, the true (actual)
spatial covariance matrix is Ry :

Ry,
e{xpxg’}{oo

and for the considered model is uniquely specified by the set
of the true parameters ,,. Within the EL approach, the set

of parameters €y, is treated as the solution of the detection-
estimation problem, if

forp=gq

forp#q M

s = min {UVLRIR(Qy)) > 0} 2)

where ,
% =argy{ [ w(x)dxzpm}, @

where w(x) is the p.d.f for LR[Ry] and Pg, is the given proba-
bility to miss a “proper” solution. The normalised likelihood
function is used for the N;;; > M as the likelihood ratio in (2)
and (3)

. det| R~ Q)R] expM
LR[R(Q,] = [ i )
expTr[NﬁdR (Qu)R]
Niig
where R = ijx;l. 5)
j=1

When the covariance matrix model R (Q“) may have an arbi-
trary scaling factor, the “sphericity test” is used as the (con-
densed) likelihood function [1, 2, 3]:

“1/A p
el = i ©

For the actual covariance matrix Ry = R(Qy) in (4) and
(6), the p.d.f*s for LR[Ry] and LR;,[Ry)] do not depend on the
actual covariance matrix, since

det[N%dCA'] expM

LR[R] = S 7
(Rol exp Tr[N%[C] @
where for i.i.d. training samples
~ L1
C =R, 2RRy* ~ CW (Niig,M,Ir) ®)

with CW (N;iy, M, 1) indicating the complex Wishart distri-
bution described by N;;; and M.

For the model that reflects a practical scheme, the training
samples in the sample covariance matrix

N
R="Y x(j)x"(j) ©)

are not independent, so the MN-variate covariance matrix of
a single (stacked) MN-variate vector of all observed snap-
shots Xy/v

Xhnv =k, .. xk) e MV (10)

is defined as the Kronecker product (indicated by ®) of the
M x M variate matrix Ry and an N x N-variate Toeplitz ma-
trix Ty which describes the temporal correlation. For the
considered stationary Gaussian (noise), the Toeplitz matrix
Ty

TN:T06p<t(),l1,...,l1v,1),t():1 (1)

is uniquely specified by the power spectrum f(®):

B 1 2 o B 1 21 B
=52 A flw)e’°dw (t():g A f(a))da)_gz)
0<w=2nf/fs <2, (13)

where f's is the sampling rate (frequency).
In the over-sampling case, the actual spectrum f(®) van-
ishes outside of the actual filter bandwidth

0< Opmin < Opax < 275; (14)

In this case, some number of eigenvalues in Ty tend to zero,
while the rest of them may not be strictly equal, especially
for a small N:

Mg > Ay > Ay = Ay =0, (15)

and therefore, the p.d.f. of the likelihood ratio

deté(TN)

LR, (C(Ty)) = [LTeC(Ty) M

(16)

1 1
with C(Ty) =R, >RR, *, should be different from LRy, [C;;]
for the same number of training samples (N;; = N). This
difference must be investigated and accounted for to retain
fidelity of the EL approach.

3. METHODS TO ACCOUNT FOR RESIDUAL
TEMPORAL CORRELATION (7y # Iy) IN EL

METHODOLOGY
_1
Let YN:RO 2XN ; XN:[xl,...,xN]. (17)
Since
YWY = yyUyUHYH, (18)

where UyUHl = UH Uy is the N x N identity matrix Iy, the
p.d.f. for LR;,(C(Ty)) may be calculated as

. detZyAnZM
LRy (C(Ty)) = N (19)
[MTrZNANZN]
where  Zy ~ CA (0,1 @ 1Iy)
1
CA(0,Ry ®RN) = (20

(270)MN[det Ry [N [det Ry]M
exp[—TrR,,' ZvRy'ZH]; Ry, Ry > 0.

For the known a priori shape of the bandpass filter,
covariance matrix 7Ty and its eigenspectrum may be pre-
calculated and used in (19) for pre-calculation of the actual
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(non-i.i.d) p.d.f of the expected likelihood. Another option is
the eigendecomposition-based resampling, with transforma-
tion .

Zy = ZNUnAn 7, 21

where U, € CN*" is the matrix of n eigenvectors that corre-
spond to the essentially non-zero eigenvalues. This accurate
approach now needs to be compared with alternative tech-
niques that are also often applied under these pre-asymptotic
circumstances, but are justified by asymptotic considerations.

3.1 Training data “‘decimation”

The simplest and most obvious approach is to decimate the
over-sampled training data, with every k-th sample (of N
available) used for covariance estimation (9). While this ap-
proach means obvious reduction of the actual training sam-
ples used, it still does not guarantee strict independence,
since the rate of the“decimated” samples is never accurately
equal to the Nyquist rate and some residual correlation re-
mains. While shown to be partially successful in EL appli-
cations [6], this brute-force technique is wasteful of training
samples and we therefore consider it only for comparison
purposes.

3.2 DFT-based resampling

It is well known that the Fourier coefficients of a stationary
finite-duration continuous signal are asymptotically uncorre-
lated in the sense that the cross-correlation between any two
Fourier coefficients approaches zero as the time duration T
grows infinite [7]. Similar behaviour is observed by discrete-
time signals.

Analytically, this statement means that asymptotically, as
N — oo, the Toeplitz matrix 7y maybe approximated by the
circulant matrix Cy, so that limy_,o|Ty —Cy| — 0. For a
finite N, the bounds for the “weak” norm

1 N N

A’ =||Ty —Cy|]* = N Y Y ((Tn)pg — (Cn)pgl*,  (22)
p=1g=1

have been derived in [7]. Specifically, for

2M?
t(k)| < M/k; M <ooVk; A*< T[Hlog(N— 1],
(23)
while for
t(k)| <ke ™ 0< o <oo, Vk, (24)
262 @ 114+e @
2
<— 0 |1-= .

ATs N (1—e—a)2[ Nl—e—“} 25

One can see, that as N — oo, the norm A falls like / % logN

in (23) or like \/% in (25), which means that for modest

N the errors of this approach should be taken into account.
Specifically, we have to investigate the cumulative effect of
these errors on the shape of the expected likelihood p.d.f.

Consider DFT transformation of M x N-variate training
sample matrix Yy into an M x N-variate matrix Y,:

1

Y, = YwFHW, ? where F, = [eizﬁﬂpq] e N, (26)

-

D = DPmins-++>Pmaxs  Pmax — Pmin T 1 =n<N;g=1,...,N.

A [FAT.Fp =0, forp=g
el 0 forp#q’

Here the n DFT frequencies ppin,--.,Pmax are selected
within the essentially non-zero part of the power-spectrum
f (). Therefore, the equivalent stochastic representation for
the LR, [V, Y]

27

dety,YH
LR,, Y, Y| = — " n__ 28
Sp[ ntn ] [%TrYnYnI-]}M ( )
is Y
detZ,AnZ
LRy [V, Y H] ~ — o innn (29)

[ TeZ, Ay ZHM
where A, is a diagonal matrix of eigenvalues of the Her-

_1 _1
mitian matrix H, (= W, *FATyF,W, > # I,), and Z, ~
EN(0,1,R1,).

3.3 Rectangular spectrum approximation

If the spectrum f(®) is approximated as

fo)={ §

Opin < O < Opgy
elsewhere in [0,27] °

then

_ {Sin(PQ)(a’maxwmin)/z ' (30)

(P - q>(wmax - wmin)/z

The eigenvectors of such a covariance matrix are known to
be the discrete prolate spheroidal (Slepian) functions, and for

N — oo, the n = W < N eigenvalues of this matrix

are approximately equal, with the rest of them rapidly reach-
ing zero value. Specifically these considerations justify the
above mentioned equivalent model

detz,7z1

LR[Z, 7] = — "~
" [Tz, ZHM

Zy ~CH (0,1, ®1,), (31)

with n = TF equivalent iid training samples. The ideal rect-
angular shape assumption, and a medium sample support N
volume are the obvious reasons of concern for this technique.

Now, all the mentioned above approximate techniques
need to be compared with the accurate equivalent statistical
model, when applied to the real-world data.

4. EXPERIMENTAL RESULTS

To verify the relative performance of these techniques, noise
data collected at the digitised output of each antenna element
(with the receivers terminated into a matched load) have been
collected at the Australian OTHR JORN at Laverton [4]. In
this collection, the sampling rate f's exceeds the nominal
bandwidth (fiuax — fimin) by a factor of 1.25.

In order to explore small to medium sample volumes, we
considered a M = 20 element portion of the antenna array
using 400 available channels for statistical averaging. The
data have been collected over a large interval with the total
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number of recorded samples Ny, = 250000 sufficient for
reliable statistical averaging and p.d.f/ c.d.f. determination.

Apart from the non-rectangular shape of the bandpass
filter and over-sampling, we also had to consider possible
variations of noise figures across the receivers (i.e. the po-
tential for an “un-balanced” array). Using the entire sample
volume for noise power estimation across the receivers, we
found variations in the estimate powers p;. In addition to the
training samples temporal correlation phenomenon, we then
analysed the impact of this imperfect balance on the expected
likelihood p.d.f.
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Figure 1: Noise samples spectra (in DFT units)
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Figure 2: Covariance matrices eigenspectra

To do so, we considered a sphericity test (allowing for an
arbitrary scaling of the sample covariance matrix R).

[deté]ﬁ R

O |
[LTI-C‘] ’ moal o,
M

mod’

LR,,(C) = (32)

using either R,,,q = Iy (“un-balanced” antenna model) or
Ryod = Dy = diag(py,. .., pm) (“balanced antenna model”).
For the M = 20-element antenna arrays, we analysed
two training samples volumes, N; = 50 and N, = 125,
which with respect to the nominal over-sampling rate are
(roughly) equivalent to Nj;z = 40(N;iq/M = 2) and Njjy =
100(N;iy/M = 5). These sample volumes span the range of
(i.i.d.) training samples per antenna element often used in

adaptive antenna array literature: N;;;/M = 2 to 5. The entire
sample volume and averaging across all available 400 chan-
nels were used for sufficiently accurate calculation of the N =
125-variate Toeplitz matrix and the shape of the bandpass fil-
ter transfer function. At Fig. 1 we introduce the FFT spec-
trum estimate (Fyf TvFy);j, Jj=1,...,125 and eigenspec-
trum of the covariance matrix 7y (Fig 2). One can see that
indeed, in ~ 100 frequency bins the noise power spectrum is
approximately equal, and the n = 100 largest eigenvalues of
the matrix 7y are approximately equal. For N = 50 this “rect-
angular” approximation is slightly less accurate (Figures 1
and 2). We considered both original (“un-balanced”) training

1
data Xy, and properly balanced data Yy = D,,*> Xy, where Dy
is the diagonal matrix with measured noise powers across the
receiver outputs (32). Results of our analysis are illustrated
by Figures 3 and 4.

At Fig. 3 we provide the averaged over all m = 20 avail-
able M = 20-element antenna arrays (m = 400/20) and sam-
ple volume (400 Monte-Carlo runs) sample c.d.f.’s for
original (un-balanced) data Xy,
equalized (balanced) data Yy,
decimated data with the decimation rate of 2 and 5,
theoretical i.i.d. model (10° trials) for N = 50 and 125,
theoretical non-i.i.d. model (19) with eigenvalues Ay
from Fig. 2.

Comparison of these experimental c.d.f’s with theo-
retical modelling leads to several important observations.
First of all, we notice that sample c.d.f.’s for original (un-
balanced) and balanced data are practically indistinguish-
able, both for N = 50 and N = 125. Although not illustrated
here, this same correspondence was observed for M = 200
element antenna with N = 1250. Therefore, variations of the
noise figures over 400 JORN antenna receivers are found to
be sufficiently small to impose no noticeable impact on the
LR c.d.f, and therefore could be ignored. One can also see
that while 2:1 decimation “shifts” the LR’s c.d.f. closer to the
theoretical LR model with N = 50, it still does not provide a
perfect match that allows the decimated data to be treated as
strictly i.i.d. On the contrary, the theoretical non-i.i.d. model
(19) that adopts the actual eigenvalues Ay (illustrated by Fig.
2) provides the perfect match with the actual data.

At Fig. 4, we introduce the similarly averaged “experi-
mental” c.d.f’s for

e cigendecomposition-based resampling (n = 40, 100)
e FFT-based resampling (n = 40, 100)
e theoretical i.i.d. model (10° trials) for N;;; = 40,100

This data shows that for a small sample support (N =
50), eigendecomposition-based re-sampling provides a good
match between the experimental and theoretical i.i.d.-based
c.d.f’s, outperforming FFT-based re-sampling. For a larger
sample support (N = 125) the difference between FFT-based
and eigendecomposition-based re-sampling is smaller. Note
the x scale on Fig.4 is tighter in order to better illustrate the
match between eigen whitened samples and the model.

5. CONCLUSIONS AND RECOMMENDATIONS

In this paper, we analysed the impact of residual temporal
correlation of internal noise data caused by non-rectangular
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Figure 4: Comparison of LR c.d.f’s for resampled and simulated data

bandpass filters and over-sampling on the accuracy of match-
ing between the actual likelihood ratio c.d.f. and the theo-
retical (assumed i.i.d.) expected likelihood ratio c.d.f. We
demonstrated that in practical systems such as the Australian
OTHR “JORN?”, the i.i.d. noise model is not sufficiently ac-
curate for the “raw” noise data to be directly used for ex-
pected likelihood c.d.f. calculations. But accurate theoretical
models and/or re-sampling that takes into account the actual
shape of the noise power spectrum does allow for the EL
matching approach to be applied in practical systems with
theoretically predicted performance. The wide-spread FFT-
based re-sampling technique can be used for relatively large
sample support, while its applicability in particular EL appli-
cations with short data records [8] must be carefully verified.
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