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ABSTRACT 

Estimating a signal which is buried inside colored noise is 

challenging since significant amount of the noise 

frequencies with considerable or higher power reside in the 

same band as that of the desired waveform. In this paper, 

an optimization- and Karhunen-Loeve Transform (KLT)-

based approach has been investigated and tested to 

estimate the latencies of single-trial visual evoked 

potentials (VEPs) which are highly corrupted by colored 

electroencephalogram (EEG) noise. The normal voltage 

level for a VEP is around 10 µV and the background EEG 

is in the proximity of 100 µV, producing a signal-to-noise 

ratio (SNR) in the range of -10 dB. The studied method 

devices an explicit pre-whitening scheme aimed at 

producing a symmetric basis matrix, which eventually 

generates a unitary eigenvector matrix that simultaneously 

diagonalizes both the wanted signal and noise correlation 

matrices. The absolute diagonalization ensures full 

decorrelation of the observed signal, and permits the 

segregation of the transformed signal space into the "signal 

plus noise subspace" and "noise only subspace." The 

performance of the KLT-based method in estimating VEP 

latencies has been assessed using comprehensively and 

realistically simulated data at SNR ranging from 0 to  

-10 dB, and real patient data gathered in a hospital. The 

technique produces reasonably high success rates, high 

accuracies and precisions, and narrow standard deviations 

in both experiments. 
 
Keywords: Karhunen-Loeve transform, eigenvalue decom-

position, subspace methods, time-domain estimator, visual 

evoked potentials.  

1. INTRODUCTION 

Visual evoked potentials (VEPs) are special types of 

elecroencephalogram (EEG) signals generated by the human 

brain when a specific visual stimulation is applied to the eye 

(left or right) of the subject under study. In a hospital, a 

visual evoked potential test is used as an objective test to 

assess the conduction of the human visual pathway from the 

retina to the brain's occipital cortex. Usually, the latency of 

the robust and positive going P100 component is used by 

doctors to determine the normality/abnormality of a subject's 

optical pathway. The ideal P100 values are 100 ms; the 

borderline P100's value for a normal subject is 115 ms. This  

 

means, subjects with defective visual pathways will register 

prolonged P100 latencies greater than 115 ms (e.g., at  

120 ms, 130 ms, etc.). Conventionally, VEPs are extracted 

from the spontaneous brain activity by collecting a series of 

time-locked electroencephalogram (EEG) epochs and 

performing multi-trial ensemble averaging (EA) on these 

samples to improve the SNR. Alternatively, a VEP 

estimation scheme based on a single VEP trial can be 

developed to reduce VEP recording time, minimize fatigue 

on subjects, and promote consistencies in the outcome of the 

VEP latencies. 

The focus of this study is to correctly estimate VEP 

latencies, instead of VEP amplitudes; clinicians are more 

interested in the VEP latencies as opposed to the VEP 

amplitudes, as far as the VEP test is concerned. The VEP 

extraction method presented here is inspired by work from a 

speech enhancement area, originally proposed by Ephraim 

and Van Trees [1] for white noise elimination, and further 

extended by Rezayee and Gazor [2], and Lev-Ari and 

Ephraim [3] to deal with colored noise.  

Moreover, this paper is an extension of our signal 

subspace work reported in [4]. In [4], we applied the 

constrained optimization concept suggested by [1] and 

adapted the estimator enhanced by [2] to estimate the P100 

components from EEG background, without using a pre-

whitening stage. In this paper, we still utilize the 

minimization procedure in [1] and now adapt [3] to extract 

VEPs and estimate the associated P100 latencies. The 

application of [3] results in better VEP estimation 

performance in comparison to the application of [2]. This is 

because the technique in [3] permits full diagonalization of 

signal and noise covariance matrices, as opposed to that in 

[2] which only approximately diagonalizes the two matrices. 

   

2. MODEL DEVELOPMENT 

2.1 VEP Model 
 
It is assumed that a VEP is actually a “known" waveform 

which can be artificially produced. The created VEP will 

then be added to much higher power “colored noise” that 

represents EEG and other background noise. Thus, the 

following model is defined. 
 

 y = x + n                      (1) 
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where, y is the M-dimensional vector of the corrupted 

(noisy) VEP signal; x is the M-dimensional vector of the 

original (clean) VEP signal; n is the M-dimensional vector 

of the additive EEG noise which is assumed to be  

uncorrelated with x. Further, H is defined as the M x M-

dimensional matrix of the VEP time-domain constrained 

linear estimator.  

Next, x̂  is defined as the M-dimensional vector of the 

estimated VEP signal. The estimated VEP signal x̂  is  

related to H and y in the following way: 
 

 yHx •=ˆ                                        (2) 

The estimated VEP signal x̂  will never be exactly equal to 

the original VEP signal x; the error signal ε defined by [1] is 

written as: 
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The εx represents the VEP distortion and εn represents the 

residual noise. If the VEP signal covariance matrix Rx is 

known, then the energies of the signal distortion can be 

written as 
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Similarly, if the EEG noise covariance matrix Rn is known, 

the energies of the residual noise can be expressed as 
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n

T
nnn E HHRεεε tr tr

2 ==          (5) 
 
Both energies in (4) and (5) lead to the total residual 

energies given as 
222
nx εεε +=                            (6) 

 
The EEG noise covariance matrix Rn can be obtained from 

the pre-stimulation EEG samples, during which the VEP 

signals are absent. If the VEP and EEG noise are 

independent, the following relationships can be established: 
 

Ry = Rx + Rn
  
                                  (7) 

  
where, Ry is the covariance matrix of the corrupted VEP. 

Using (7), we can approximate Rx by subtracting Rn from 

Ry. The aim is to minimize the unwanted energies in (6) so 

that the generated error is minimal. A difficulty arises since 

lowering noise energies means increasing the distortion 

energies, and vice versa. Therefore, a proper balance needs 

to be determined so that the noise residues can be 

reasonably reduced without introducing significant 

distortion to the processed signal. The excessive amount of 

the residual noise prohibits the discrimination between the 

desired VEP peak (i.e., the P100) and the noise peaks itself, 

even if the desired signal is successfully extracted. On the 

other hand, the excessive distortion means the desired VEP 

peak may have shifted either to the left or right of its 

original position, resulting in an inaccurate measurement of 

the VEP latency.  

   

2.2 Estimator Optimization 
 
An optimal time domain constrained linear estimator H that 

minimizes the VEP signal distortion and maintains the 

residual noise within a permissible level, is mathematically 

formulated by [1] as 
 

222 :subject to    

            

min Mσnxopt ≤= εε

H

H                (8) 

where M is the dimension of the noisy vector space and σ 
2
 

is a positive constant noise threshold level. The σ 
2
 in (8) 

dictates the amount of the residual noise allowed to remain 

in the linear estimator. Next, the Lagrangian function in 

association with the “Kuhn-Tucker necessary conditions for 

constrained minimization” [1] are applied to (8) to obtain 

Hopt. The formed Lagrangian function can be expressed as 
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222
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where µ is the Lagrange multiplier. It follows that the filter 

matrix H is a stationary feasible point if it satisfies the  

following gradient equation ∇HL(H, µ) = 0: 
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Subsequently, the gradient equation in (10) can be solved to 

yield the following H. 
 

1)( −+= nxx µRRRH

                          

(11)    
 

The filter matrix H stated in (11) functions as a fixed 

filter, which performs well to estimate the VEP at a 

relatively high SNR. As the SNR degrades, it is desirable if 

H can be adjusted and manipulated accordingly to 

minimize the noise residues while keeping the signal 

distortion at an acceptable level.  

 

2.3 Generic Subspace Approach 
 
With reference to (11), eigenvalue decomposition is to be 

performed on Rx and Rn. By assuming that Rx = U∆∆∆∆xU
T
 and 

Rn = U∆∆∆∆nU
T
 exist, we rewrite (11) as 

 
Hopt = U∆∆∆∆x(∆∆∆∆x + µ∆∆∆∆n)

−1
U

T
                (12) 

   
where, Hopt denotes an optimal estimator; U is the unitary 

eigenvector matrix produced from a symmetric basis matrix 

ΣΣΣΣ which is to be computed from the proper combinations of 

Rx and Rn terms; ∆∆∆∆x is the diagonal eigenvalue matrix of Rx; 

∆∆∆∆n is the diagonal eigenvalue matrix of Rn; µ is the Lagrange 

multiplier which has to be set to a proper value. The higher 

value of µ  eliminates more noise residues at the expense of 

higher distortion in the recovered VEP.   

Theoretically, the linear estimator in (12) functions  

optimally if the unitary eigenvector matrix U derived from ΣΣΣΣ 

is able to simultaneously diagonalize both Rx and Rn. The 

full diagonalization of their eigenvalues can be obtained if 

and only if Rx and Rn multiplication is commutative  

(i.e., Rx Rn = Rn Rx). In reality, complete diagonalization (i.e., 

without pre-whitening) is not possible since their 

multiplication is non-commutative.  
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2.4 Karhunen-Loeve Transform Method Based on the 

Explicit Prewhitening of the Correlation Matrix 

of the Desired Signal 
 

Next, we employ the basis matrix 2/12/1 −−= nxn RRRR  

from [3] to create a unitary eigenvector matrix V that 

indirectly, simultaneously and fully diagonalizes both Rx and 

Rn. To make use of R, (11) will need to be further 

manipulated to yield the following: 
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The eigendecomposition operation of the symmetric basis 

matrix 2/12/1 −−= nxn RRRR  leads to the following: 
 

        VΛRV =                                    (14) 
TTT V VΛV ΛVRΛRVV ==↔= −− 1               (15) 

 
where Λ and V are, respectively, the eigenvalue and unitary 

eigenvector matrices of R. It is to be noted that VV   =−T
  

and 
T

VV   1 =−
for unitary V. By putting R in (15) into (13), 

the KLTM-based H can be written as  
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where G is known as the gain matrix. Based on (2) and (16), 

the estimated VEP can be expressed as 
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The corrupted VEP y in (17) is explicitly pre-whitened 

by 2/1−
nR . Afterwards, the whitened signal is decorrelated by 

the KLT matrix V
T
. Then, the transformed signal is modified 

by a signal subspace gain matrix G. Next, the modified 

signal is retransformed back into the original form by the 

inverse KLT matrix V. The retransformed signal is further 

de-whitened by 2/1
nR  to obtain the desired VEP signal.  

 

2.5 Algorithm Implementation 
 
The proposed approach can be formulated in the following 

eight steps. For each VEP trial: 
 
Step 1: Compute the covariance matrix of the noisy signal Ry 

which can be directly obtained from the observed (corrupted) 

signal. 

Step 2: Estimate the covariance matrix of the noise Rn which 

can be obtained from the pre-stimulation EEG, during which 

the VEP sample is absent. 

Step 3: Approximate the covariance matrix of the desired 

signal Rx, by using Rx = Ry − Rn. 

Step 4: Perform the eigendecomposition operation on the 

basis matrix 2/12/1 −−= nxn RRRR  and extract the resulting 

unitary eigenvector and eigenvalue matrices V and ΛΛΛΛ, 

respectively. 

Step 5: Assuming that λk series represented by λ1 > λ2 > λ3 … 

λM are the diagonal elements of ΛΛΛΛ sequenced in descending 

order, approximate the dimension L of the VEP signal 

subspace by counting the number of non-zero elements of ΛΛΛΛ.  

L = arg{
Mk ≤≤   1

max
 λk > 0}      (18) 

Step 6: Compute the gain vector of the KLTM estimator as 

follows: 

Liµ)ixλixλiq ≤≤+= 1      )()/(()(             (19) 
 

Experimentally, µ was varied from 0 to 25, and µ = 2 was 

found to be ideal. The gain matrix G is obtained by 

diagonalizing the gain vector q. 

Step 7: Determine the linear KLTM estimator using (16). 

Step 8: Estimate the KLTM-enhanced VEP signal using (17). 

3. PERFORMANCE EVALUATION 

The KLTM method was tested and assessed using artificial 

and real human data obtained from a hospital. 
 
3.1 Assessment of the Algorithm using Artificial Data 
 
The clean artificial VEP x is generated by superimposing 

several Gaussian functions; the amplitudes, variance and 

mean of these functions are tweaked to generate precise 

peak latencies at 100 ms, mimicking the real P100. The pre-

stimulation EEG colored noise e(k) is generated using 

autoregressive (AR) model [5] given by the following 

equation. 
 

  e(k) = 1.5084e(k – 1) – 0.1587e(k – 2) – 

   0.3109e(k – 3) – 0.0510e(k – 4) + u(k)          (20) 
 

where u(k) is the input driving noise of the AR filter and e(k) 

is the filter output. The artificial post-stimulation EEG noise 

n is generated by changing the variance of e. Since noise is 

assumed to be additive, the artificially-corrupted VEP signal 

y is then produced by adding together x and n.  

To test the robustness of KLTM, the ratio of the 

artificial VEP over the EEG noise was varied from 

approximately +0 dB to -10 dB using the following formula: 
 

(Watts)EEG  stimulus-post ofPower 

(Watts) VEP ofPower 
log10(dB) SNR =     (21) 

 
The corrupted VEP signal with a specific value of SNR was 

applied to the input of the KLTM filter and the estimated 

P100 waveform was retrieved at the output. To obtain 

reliable statistics, five hundred different runs were 

performed for each level of SNR. Success rate, average 

errors, mean of peak latencies and standard deviations are 

used as performance indicators to assess the effectiveness of 

KLTM in single-trial estimation of VEP latencies. To 

measure success rate, visual inspections were performed to 

judge whether or not the estimators’ processed waveforms 

are acceptable. The highest peak within 100 ±10 ms is 

considered as the wanted P100 component. Any trial is 

noted as a failure if the waveform fails to show clearly the 
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pertinent peak within the stated ±10 ms tolerance. The 

success rate for each algorithm is expressed in terms of a 

percentage. It is calculated according to the following 

formula: 
 

100% x )   / successes ofnumber ( rate  success N=        (22) 
 
where N is the number of runs (trials) per SNR which in this 

case equals to 500. Next, the average errors eP100  in 

estimating the latency of the P100 was calculated as follows: 
 

∑ −=
=

500

1
100100 100)(ˆ 

i
PP ite                     (23) 

where )(ˆ
100 itP  represents the estimated P100 latency in 

milliseconds. For five hundred runs per SNR, the average 

(mean) of the estimated P100 peak latencies, denoted as 

100P , is calculated as 

∑=
=

500

1
100100 )(ˆ

i
P itP                        (24) 

where )(ˆ
100 itP  is the individually estimated latency of the 

P100 peak in milliseconds. Next, the standard deviation 

100Pσ  of the P100 peak latencies is computed as 
 

)1500/())(ˆ(
500

1

2
100100100 −∑ −=

=i
PPP titσ                  (25) 

where )(ˆ
100 itP and 100Pt  are the estimated P100 latencies 

and average value (in milliseconds), respectively, of the 

five hundred P100 data sets. Specifically, the P100 with a 

latency average closer to 100 ms, coupled with a narrower 

standard deviation indicate better performance. 

Table 1 below tabulates the success rate, average 

errors, peak latency mean, and standard deviations for the 

KLTM estimator. 
  

 
Table 1 - The success rate, average errors, peak latency mean 

and standard deviations of the KLTM estimator at  

SNR = 0 to -10 dB.  
 

SNR 

[dB] 

Success 

Rate 

[%] 

Average 

Error 
Mean 

Latency 

Standard 

Deviation 

0 98.7 4.1 101.2 2.6 

-2 96.9 4.9 101.8 5.7 

-4 94.3 5.1 102.4 5.9 

-6 92.1 5.8 102.9 6.4 

-8 89.6 6.7 103.5 7.5 

-10 85.4 7.6 104.3 8.1 
 

 
From Table 1, it can be stated that KLTM produces the 

highest success rate at 0 dB and the least success rate at  

-10 dB. Correspondingly, the lowest average error occurs at 

0 dB and the highest one is generated at -10 dB also. The 

mean latency and standard deviation produced by KLTM 

increase slightly as the SNR value gets lower.  

For some graphical illustrations, various waveforms 

with successfully estimated P100's at -6 and -10 dB are 

shown in Figure 1 below. 
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Figure 1 - Clean VEP, corrupted VEP, and estimated VEP 

waveforms by KLTM at (a) -6 dB; (b) -10 dB. 

 

3.2 Assessment of the Algorithm using Human Data 
 

This section evaluates KLTM in estimating human P100 

peaks, which are used by doctors as objective evaluation of 

the visual pathway conduction. Experiments were conducted 

at Selayang Hospital, Kuala Lumpur using RETIport32 

equipment, and carried out on sixteen subjects having 

normal (P100 [ 115 ms) and abnormal (P100 > 115 ms) 

VEP readings. They were asked to watch a pattern reversal 

checkerboard pattern. The detailed test setup (sampling 

frequency, electrode connections, etc.) can be found in  

[4, 6]. Eighty trials for each subject’s right eye were 

processed by the VEP machine using ensemble averaging 

(EA). The averaged values were readily available and 

directly obtained from the equipment. Since EA is a multi-

trial scheme, it is expected to produce good estimation of the 

P100 that can be used as a baseline for comparing the 

KLTM estimator performance.   

Further, KLTM requires unprocessed data from the 

machine. Thus, the equipment was configured accordingly 

to generate the raw data. The recording for every trial 

involved capturing the brain activities for 333 ms before 

stimulation was applied; this enabled us to capture the 

colored EEG noise alone. The next 333 ms was used to 

record the post-stimulus EEG, comprising a mixture of the 

VEP and EEG. The same process was repeated for the 

consecutive trials. For comparisons with EA, the eighty 

different waveforms per subject produced by KLTM were 

also averaged. Again, the strategy here was to look for the 

highest peak from the averaged waveform. The purpose of 
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averaging the outcome of KLTM was to establish the 

performance of KLTM as a single-trial estimator; the mean 

KLTM peak that is close to the EA peak reflects the 

accuracy of the individual single-trial outcome.  

Illustrated in Figures 2(a) and 2(b) below are the 

KLTM's extracted Pattern VEPs for S1 from trial # 46 and 

for S7 from trial # 21, respectively. It is to be noted that any 

peaks that occur below 90 ms are noise and are therefore 

ignored. Attention is given to any dominant (i.e., highest) 

peak(s) from 90 to 140 ms.  
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Figure 2 - The P100 of (a) the first subject (S1) taken from 

trial # 46; (b) the seventh subject (S7) taken from trial # 21.  
 

From Figure 2(a), the highest peak produced by KLTM 

is at 100 ms, which is close to 99 ms obtained by EA. On the 

other hand, the corrupted VEP (unprocessed raw signal) 

contains a dominant peak at 121 ms. From Figure 2(b), the 

highest peak produced by KLTM is at 111 ms, which is close 

to 108 ms obtained by EA. However, the corrupted VEP 

shows a dominant peak at 117 ms.  

Table 2 below summarizes the mean latency values of 

the P100's by EA and KLTM for the sixteen subjects, S1 to 

S16. If the maximum allowable mean error (em) is set at !5, 

KLTM successfully estimated the P100's from twelve 

subjects: S1, S2, S3, S4, S6, S7, S8, S12, S13, S14, S15, and 

S16. On the other hand, KLTM unsuccessfully estimated the 

intended peaks from subjects S5, S9, S10, and S11. 

Therefore with the given number of subjects, the success rate 

for KLTM is at 75 %, and the average mean error is 4.5. In 

brief, the simulated and real data experiments exhibit the 

capability of KLTM in VEP estimation. 
 

Table 2 - The mean latencies of P100's of the EA and KLTM 

estimators for sixteen different subjects.  
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S1 99 99 0 S9 130 145 15 

S2 100 100 0 S10 117 108 9 

S3 119 119 0 S11 119 111 8 

S4 128 131 3 S12 114 113 1 

S5 99 118 19 S13 102 103 1 

S6 107 105 2 S14 123 118 5 

S7 108 109 1 S15 102 105 3 

S8 107 112 5 S16 108 108 0 
 

4. CONCLUSION 

A Karhunen Loeve transform method (KLTM) based on 

the eigendecomposition of the explicitly pre-whitened VEP 

signal covariance matrix has been presented and tested to 

estimate the VEP's P100 peaks severely degraded by colored 

EEG noise. The results of the simulated and real patient data 

reveal that the method is a promising technique that can be 

further refined and applied in the real world as a single trial 

estimator of biomedical signals, which are currently 

extracted by means of multi-trial ensemble averaging. 
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