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ABSTRACT

We propose a simple but flexible method for solving the
generalized vector-valued TV (VTV) functional with a non-
negativity constraint. One of the main features of this re-
cursive algorithm is that it is based on multiplicative updates
only and can be used to solve the denoising and deconvolu-
tion problems for vector-valued (color) images.

This algorithm is the vectorial extension of the IRN-NQP
(Iteratively Reweighted Norm - Non-negative Quadratic Pro-
gramming) algorithm [1] originally developed for scalar
(grayscale) images, and to the best of our knowledge, it is
the only algorithm that explicitly includes a non-negativity
constraint for color images within the TV framework.

1. INTRODUCTION

The development of numerical algorithms for vector-valued
regularization has recently attracted considerable interest
[2,3,4,5,6,7,8,9]. In particular the Total Variation (TV)
minimization scheme for deblurring color images, first intro-
duced in [10], is of special interest since it can handle the
Gaussian noise model and the salt-and-pepper noise model.

The ¢P vector-valued TV (VTV) regularized solution
(with coupled-channel regularization [11]) of the inverse
problem involving color image data b and forward linear op-
erator A is the minimum of the functional
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where n € C = {r,g,b} (note that C could represent an ar-
bitrary number of channels) and the deblurring of images
corrupted with Gaussian (/2-VTV case) and salt-and-pepper
noise (/'-VTV case) can be performed when p =2, ¢ = 1
and p =1, g =1 in (1) respectively. We use the following
notation:
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e u, (n€C)isa l-dimensional (column) or 1D vector that
represents a 2D grayscale image obtained via any order-
ing (although the most reasonable choices are row-major
or column-major) of the image pixel.

e u=[(u)?(uy)"(u,)?]" is a 1D (column) vector that
represents a 2D color image.

. % [Au—bl||% is the data fidelity term. For the scope of this
paper, the linear operator A is assumed to be decoupled,
i.e.: A is a diagonal block matrix with elements A, and
neC={rg,b};if Ais coupled (interchannel blur) due to
channel crosstalk, it is possible to reduced it to a diagonal
block matrix via a similarity transformation [12, 13],
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TV regularization to color images with coupled channels
(see [11, Section 9], also used in [5, 7, 8]),
e the p-norm of vector u is denoted by |lul|,,
e scalar operations applied to a vector are considered to be
applied element-wise, so that, for example, u = v =

ulk] = (v[k])? and u = /v = ulk] = \/v[K],

o /Y (Dyu,)*+ (Dyu,)* is the discretization of |Vul for
neC

coupled channels (see [7, eq. (3)]), and

e horizontal and vertical discrete derivative operators are
denoted by D, and Dy, respectively.

The main target in TV problems is the denois-
ing/deblurring of digital images, either grayscale or color.
The enforcement of a non-negativity constraint, i.e.: u > 0,
for the solution of (1) is not only physically meaningful in
most of the cases: images acquired by digital cameras, MRI,
CT, etc., it also improves the quality of the reconstruction
(see [14]). Nevertheless, the non-negativity constraint is sel-
dom considered in the practice, since it makes a hard prob-
lem even harder. For scalar (grayscale) images, only a hand-
ful of numerical algorithms ([15, Ch. 9] and more recently
[1, 14, 16]) include a non-negativity constraint on the solu-
tion of the TV problem (C = {gray} in (1)). Currently for
vector-valued (color) images, to best of our knowledge, there
is no algorithm that explicitly includes the non-negativity
constraint within the TV framework.

Recently, the IRN-NQP algorithm [1] was proposed to
solve the generalized TV problem with an additional non-
negativity constraint for scalar (grayscale) images. In this
paper we augment the scope of [1] by including the ability to
handle vector-valued (color) images, resulting in the vector-
valued IRN-NQP algorithm, which solves the problem

° é is the generalization of

min 7(u) s.t. 0 <u < vmax,
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where T (u) is defined as in (1), and A is assumed to be a
decoupled linear operator, which includes the denoising case
(A=1T1in(1)).

The vector-valued IRN-NQP algorithm (Iteratively
Reweighted Norm or IRN, Non-negative Quadratic Program-
ming or NQP) starts by representing the ¢” and /¢ norms in
(1) by the equivalent weighted /> norms, in the same fash-
ion as the vector-valued Iteratively Reweighted Norm (IRN)
algorithm (see [9]), and then cast the resulting weighted ¢*
functional as a Non-negative Quadratic Programming prob-
lem (NQP, see [17]), which uses an update rule that only in-
volves matrix vector multiplication. Finally, we stress that
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our algorithm can handle any norm with 0 < p,q < 2, in-
cluding the /2-VTV and ¢'-VTV as special cases.

2. THE VECTOR-VALUED IRN-NQP ALGORITHM

In this section we summarized the derivation of the vector-
valued IRN (Iteratively Reweighted Norm) [9] algorithm as
well as the description of the NQP (Non-negative Quadratic
Programming) [17] problem to finally describe the vector-
valued IRN-NQP algorithm.

2.1 The Vector-valued Iteratively Reweighted Norm
(IRN) Algorithm

The vector-valued IRN approach is an extension of the
IRN algorithm [18], and is closely related to Iteratively
Reweighted Least Squares (IRLS) method for scalar [19] and
vector [12] valued problems.

The vector-valued IRN approach represents the ¢7 and ¢4
norms in (1) by the equivalent weighted ¢> norms, resulting
in (see [9] for details):
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where u®) is a constant representing the solution of the pre-
vious iteration, { is a constant value, Iy is a N x N identity

matrix, ® is the Kronecker product, C = {r,g,b} and
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Following a common strategy in IRLS type algorithms
[20], the functions
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are defined to avoid numerical problems when p,q < 2 and

Au® —b or Z (Dxu,(f))2 + (Dyu,(f))2 has zero-valued com-
neC
ponents.

2.2 Vector-valued IRN as Iteratively Reweighted Least
Squares

WF(k> 0 ) 5
, A =
o wl

A -
(\/ID)’ and b = ( 3 ) , we can cast (3) as a standard
IRLS problem:

We observe that by defining W®*) = (

©))

Note that we are neglecting the constant term, since it
has no impact on the solution of the optimization problem at
hands. Moreover, after algebraic operations, the minimiza-
tion problem in (9) can be expressed as

min 7® (u) = %uTATW(MAu— ATw®b)u.  (10)

u

It is straightforward to check that the matrix AW (¥4 is sym-
metric and positive definite, and therefore solving
ATw R H)ukD) = ATw®b), (11)

gives the minimum of (10), and converges (see [18] for de-
tails) to the minimum of (1) as the iterations proceeds.

2.3 Non-negative Quadratic Programming (NQP)

Recently [17] an interesting and quite simple algorithm has
been proposed to solve the Non-negative Quadratic Program-
ming (NQP):

1
min EVTCI)VJrCTV s.t. 0 < v < vmax, (12)

where the matrix & is assumed to be symmetric and positive
defined, and vmax is some positive constant. The multiplica-
tive updates for the NQP are summarized as follows (see [17]
for details on derivation and convergence):

10l i@y <0
and @), = {0 otherwise,

)] , Vmax} (13)

where %) = &ty v®) = & v(*) and all algebraic oper-
ations in (13) are to be carried out element wise. The NQP
is quite efficient and has been used to solve interesting prob-
lems such as statistical learning [17], compressive sensing
[21], etc. and in general, it is well-suited to solve large-scale
non-negative quadratic programming problems, since its up-
date rule only involves matrix-vector multiplication.

In [17] it is proven that the multiplicatibe updates (13)
converge to the solution of (12), nevertheless there is no ex-
plicit mention of a practical rule to stop the iterations; in the
next section we propose a simple but effective practical con-
dition.

&t — ®,; ifd,; >0
nl )0  otherwise
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2.4 Vector-valued IRN-NQP

The optimization problem defined in (10) is unconstraint, and
within the IRN framework ([18, 9]), the linear system (11) is
usually solved via conjugate gradient (CG) or Preconditioned
CG (PCG). By setting @) = ATW® A and ¢ = -ATW®b, in
(12), a subtle but significant result is achieved: the constraint
0 < u < vmax is enforced; in other words, by using the pro-
posed change of variables we may solve the non-negative
constraint optimization problem described in (2) by itera-
tively solving (10) via the multiplicative updates described
in (13). We stress that the upper bound constraint may or
may not be enforced (see Sections 2.1 and 2.3 in [17]) but
we consider it since it could be useful when a priory infor-
mation about a physically meaningful upper bound is known.
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The vector-valued IRN-NQP algorithm is summarized in
Algorithm 1. We highlight the matrix ®*) does not have

to be explicitly constructed (neither @**) nor @ (0)y; for in-
stance if @ (we drop the superscript to simplify the notation)
is equivalent to the convolution operation, i.e.: du = gx*u,
where g is a convolution kernel (and * the convolution opera-
tor), then we define g = g* — g” (¢* and g~ defined in a similar
fashion as ®* and @ in (13)) to finally note that ®*u = g* *u
and ®u=g *u.

One key aspect, with a direct impact to the computa-
tional and reconstruction performance of the vector-valued
IRN-NQP algorithm, is when to stop the multiplicative up-
dates described in (13); in [17] there is no explicit mention
about this important detail. Here we propose to use simple

condition (see 81(\,%1, in Algorithm 1, which we called NQP
tolerance) to terminate the inner loop in Algorithm 1; this
condition, inspired in the idea of forcing terms [22] for the
Inexact Newton method [23], adapts the tolerance used to de-
cide when to stop the multiplicative updates (break the inner
loop). Experimentally, we have determined that the constants
o € [1..0.5] and y € [le-3..5e-1] give a good compromise
between computational and reconstruction performance.

Initialize
u®=b
fork=0,1,...

W;k) = diag <TF78F (Au(k) — b))

Qg‘) = diag (TR,eR (Z (Dxu,gk))2 + (Dyuglk))2> )
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form=0,1,...M
v(k,m) _ (1)+(k)u(k,m)7 V(k,m) _ CI)'(k)u(k’m)

e - {uwm) {,Cm c<k>2+v<k.m>v<k,m>} max}

ZD(k,m)
. ||c1>(1<)u(1c~,rn+1)+c<k)||2 k
1f< <O <£Nép break;
end

ak+ D) = qUeM+1)

end
Algorithm 1: Vector-valued IRN-NQP algorithm.

Finally, we emphasize that the thresholds values for the
weighting matrices Wy and Wg have a also great impact in the
quality of the results and in the computational performance
as well, and while not done so here, this algorithm can auto-
adapt (as for the IRN algorithm, see [18, Sec. IV.G]) the

values of €7 and €g based on the particular characteristics of
the input data to be denoised/deconvolved.

3. EXPERIMENTAL RESULTS

To best of our knowledge, there is no other algorithm that ex-
plicitly includes a non-negativity constraint for color images
within the TV framework, and therefore we choose to com-
pare the vector-valued IRN-NQP (vv-IRN-NQP) algorithm
with the vector-valued IRN (vv-IRN) algorithm [9], focusing
on reconstruction quality, since the latter does not include a
non-negativity constraint; however we do report the compu-
tational performance for both algorithms. It is important to
highlight that in [9] the performance of the vv-IRN algorithm
was compared with that of three alternative variational ap-
proaches: [5], an approximation of the Mumford-Shah func-
tional, the vectorial lagged diffusivity (an extension of [24]
used in [5]) and [25], an implementation of the fast dual min-
imization (FDM) of vector-valued TV [7]. For all cases the
reconstruction quality were about the same, nevertheless the
vv-IRN had a superior computational performance for the
general deconvolution case; only the FDM method [7, 25]
for 2-VTV denoising had a slightly better computational re-
sults.

We used the color natural images from [26] as test im-
ages, which includes aerial, texture and miscellaneous im-
ages (including the standards “Lena” and “Goldhill”, see Fig.
1). The images are between 512 x 512 and 1024 x 1024
pixel. All simulations have been carried out using Matlab-
only code on a 1.83GHz Intel Dual core CPU (L2: 2048K,
RAM: 4G). Results corresponding to the vector-valued IRN-
NQP algorithm presented here may be reproduced using the
the NUMIPAD (v. 0.30) distribution [27], an implementation
of IRN and related algorithms.

(d)

Figure 1: Test color images: (a) “Goldhill” (787 x 576 pixel),
and (b) “Lena” (512 x 512 pixel).

All images were used for the denoising and deconvolu-
tion cases, where we corrupted the test images with Gaus-
sian additive noise or salt-and-pepper noise. For the decon-
volution case, the images were blurred by 7 x 7 out-of-focus
kernel (2D pill-box filter). Due to space constrains we chose
to present reconstruction SNR values and computation times
for the “Goldhill” and “Lena” test images only; in average
these results are representative of all test images. Recon-
struction SNR values and computation times are compared
in Table 1 (denoising with the salt-and-pepper noise model
or /'-VTV denoising), Table 2 (denoising with the Gaussian
noise model or ¢2-VTV denoising), Table 3 (deconvolution
with the salt-and-pepper noise model or /!-VTV deconvolu-
tion), Table 4 (deconvolution with the Gaussian noise model
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or 2-VTV deconvolution). In Figs. 2, and 3 we displayed
noisy and reconstructed images for the £!-VTV denoising,
'-VTV deconvolution and ¢>-VTV deconvolution respec-
tively.

(a)

Figure 2: (a) “Goldhill” with 50% of its pixel corrupted with
salt and pepper noise (SNR -4.81 dB) (b) “Goldhill” recon-
structed via the vv-IRN-NQP algorithm (SNR 15.0 dB).

(b)

SNR (dB) Time (s)
Image |[Noise|vv-IRN|vv-IRN-NQP|vv-IRN|vv-IRN-NQP
10% | 21.7 219 58.7 66.8
.11 30% 17.7 17.7] 79.8 107.2
Goldhill 55071573 15.0] T02.7 1833
70% 12.0 11.5] 113.9 209.4
10% | 22.5 23.1| 37.7 47.4
Lena 30% 18.6 19.0] 48.1 73.5
50% 16.1 16.5] 53.5 134.7
70% 12.5 12.6] 63.5 142.8

Table 1: Denoising performance results for ¢/'-VTV, com-
puted via the vv-IRN [9] and the vv-IRN-NQP algorithms.

SNR values are about the same for all cases with moder-
ate noise levels, nevertheless the images reconstructed via
the vv-IRN-NQP method have better visual quality. For
high noise levels, we particularly point out the deconvolu-
tion performance (reconstruction quality) results for £!-VTV
case: the proposed method results has far better SNR values
than the vv-IRN [9] method (see Table 3); moreover the re-
constructed images via vv-IRN have negative pixel values,
which produces an unpleasant visual effect, and setting them
to zero may result in the presence of spurious ripples in the
reconstructed image. The reconstructed images via vv-IRN-
NQP (proposed method) does not suffer from these kind of
artifacts due to the non-negativity constraint.

As expected the computational performance of the vv-
IRN (which does not include a non-negativity constraint) is
better than performance of our proposed method (vv-IRN-
NQP algorithm), especially for the deconvolution case (about
9 times faster). Experimentally, we have found that the vv-
IRN-NQP method needs high accuracy (we use @ = 0.5,
Y= le-3 in Algorithm 1) to attain good reconstruction results
for the deconvolution case; one way to improve the compu-
tational performance of the vv-IRN-NQP method could be
to seed it with a good initial solution (found via any uncon-
straint VTV algorithm) so only a few iterations are needed.

(a)

(b)

Figure 3: Blurred (a) “Lena” with 50% of its pixel corrupted
with salt and pepper noise (SNR -4.55 dB) (b) “Lena” recon-
structed via the vv-IRN-NQP algorithm (SNR 17.9 dB).

4. CONCLUSIONS

The vv-IRN-NQP algorithm gives very good reconstruction
quality for the 2-VTV and ¢!-VTV denoising/deconvolution
problems (specially for very high levels of noise), with a sat-
isfactory computational performance, even when compared
to the vv-IRN method [9]. However, to the best of our knowl-
edge, the vv-IRN-NQP method is the only algorithm that ex-
plicitly includes a non-negativity constraint for color images
within the TV framework, and it was expected that its com-
putational performance wouldn’t be as good as those meth-
ods which do not include a non-negativity constraint.

Finally, we highlight that the vv-IRN-NQP algorithm is
very flexible, and some of its parameters, such the tolerance
to stop the multiplicative updates and thresholds for weight-
ing matrices, can be automatically adapted to the particular
input dataset. Furthermore, it can be applied to regularized
inversions with a wide variety of norms for the data fidelity
and regularization terms, including the standard ¢>-TV and
£'-TV problems.

SNR (dB) Time (s)
Image [Noise (02)|vv-IRN|vv-IRN-NQP|vv-IRN|vv-IRN-NQP
Goldhill 2.5¢e-3 19.0 18.9] 15.2 27.1
1.0e-2 16.2 16.2] 18.7 27.4
Lena 2.5¢-3 19.9 19.9 9.7 15.1
1.0e-2 17.2 172 113 15.7

Table 2: Denoising performance results for ¢2-VTV, com-
puted via the vv-IRN [9] and the vv-IRN-NQP algorithms.
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SNR (dB) Time (3)

Image

Noise (62)|vv-IRN[vv-IRN-NQP|vv-IRN[vv-IRN-NQP

Goldhill

2.5e-3
1.0e-2

15.2 15.2
14.1 14.1

354 213.6
70.9 210.0

Lena

16.4%) 16.5
153 153

2.5e-3
1.0e-2

22.5 105.9
42.6 116.4

Table 4: Deconvolution performance results for ¢2-VTV,
computed via the vv-IRN [9] and the vv-IRN-NQP algo-
rithms. Reconstructed images with SNR values marked with

(*) have negative pixel values.
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