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ABSTRACT

This paper considers the problem of using binaural micro-
phones to track speakers in a situation where the micro-
phones are themselves in motion (i.e. due to listener head
movement). We present a general framework that applies
particle filtering to combine sequential interaural time differ-
ence (ITD) cues with noisy sensor motion data. The frame-
work is demonstrated in a meeting scenario applied to a
moving-listener version of a speaker-diarization task. The
paper extends previous work by investigating two potentially
complementary ways of exploiting pitch track estimates in
this framework, either, i) informing the time points at which
speaker turn changes may occur, or ii) improving the ITD
estimates by allowing integration over spectro-temporal re-
gions grouped by pitch. Experiments using real meeting
scenario recordings, made with in-ear binaural microphones,
show that the latter approach leads to large and significant
reductions in diarization error rate.

Index Terms: speaker change tracking, binaural hearing,
pitch extraction, particle filtering, active listening

1. INTRODUCTION

Acoustic signals provide one of the simplest and most re-
liable means for localising and tracking moving objects.
Audio-based tracking systems using arrays of two or more
microphones are being researched within a wide range of ap-
plication scenarios, including intelligent meeting rooms and
smart houses (see e.g. [1, 2]). However, in the vast majority
of cases algorithms and methods are developed with the un-
derlying assumption that the microphones are located in fixed
positions. This assumption is a particularly attractive sim-
plification in sound source tracking applications where any
microphone motion introduces added complexity and ambi-
guity in the cues. However, enforcing and relying on station-
ary sensors assumptions introduces a constraint that makes
the technology unsuitable in many situations (e.g. wearable
listening devices, hearing robots, vehicle sensors).
Accepting that acoustic sensors may move, significantly
increases the difficulty of the sound source tracking prob-
lem. First, the quasi-stationary assumptions that are used
in window-based extraction of source location cues (i.e., in-
teraural time and level differences) are not compatible with
rapid head rotations. Head rotation can approach speeds of
up to 500 degrees/sec, equivalent to 5 degrees per 10 ms
analysis window [3]. Rapid rotation thus results in signifi-
cant ‘motion blurring’ of location estimates. Second, head
motion introduces extra ambiguity [3]. For example, if a sin-
gle source is dominating the acoustic scene, then a leftwards
head movement may be hard to distinguish from a rightwards
movement of the source, and vice versa. Note, in biological
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systems this second problem may be countered by comple-
mentary sensory input from other modalities such as vision
or proprioceptive feedback.

The human auditory system has clearly developed solu-
tions to the moving sensor problem. Take for example the
ease with which we can interpret a complex acoustic scene
such as a busy street without having to stop and listen: in
general, your ears will be subject to constant movement con-
founding the tracking of the absolute position of external
sound sources. The emergence of mobile hearing applica-
tions, such as perceptual robotics and wearable listening de-
vices, lends urgency to the development of machine listening
technology with comparable ‘on-the-go’ capabilities

In this paper we present initial steps towards mobile ma-
chine listening: in particular, we consider the additional com-
plexity that microphone motion introduces to a problem that
has been well studied from a stationary microphone perspec-
tive — the problem of using auditory localization cues to track
speaker changes in a meeting (i.e. diarization). We recon-
sider this problem from the perspective of a meeting partic-
ipant (human or robotic!) making natural head movements
and propose a model which operates by simultaneously mod-
elling changes in both the state of the external environment
and of the listener.

Solving the moving-listener diarization tasks require ex-
plaining changes in the observed, binaural localisation cues
(which provide information relative to the listener’s head po-
sition) by ‘decoding’ them in terms of changes in the lis-
teners’s head position and changes in the currently active
speaker. This is illustrated in Figure 1. From the acoustic
signal we are extracting localisation cues, 09, that indicate
the spatial angle of a sound source relative to the rotational
angle of the listeners’s head. This perceived angle is the dif-
ference between the absolute angle of the listener’s head, o1
(i.e. the angle relative to fixed room axis) and the absolute
spatial angle of the active sound source 65,. It is these un-
derlying angles, 87 and wa, that we wish to track in order
to recover a full description of the scenario.

In [4] we presented our initial mobile speaker turn track-
ing system based on a particle filtering formulation using bin-
aural localisation cues. This paper describes further improve-
ments to the system through the introduction of pitch-track
information. Through pitch tracking we can identify spectro-
temporal regions (fragments) which are likely to come from
the same sound source. This information can be of potential
use in several ways. First, periods spanned by a single frag-
ment are unlikely to contain speaker changes, i.e. speaker
changes will be commonly indicated by a break in voicing or
a pitch track discontinuity. Second, in [5] we showed how
integrating localisation cues across pitch-based fragment re-
gions improved the accuracy of the localisation cues as well
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Figure 1: Tracking the perceived direction of sound for a typ-
ical meeting scenario and from a moving perspective. Track-
ing the observed spatial angle (6°) composes into simulta-
neously tracking the absolute angle of the head (8" ) and the
absolute angle of the active sound source (65).

as their robustness to reverberation. In this paper we set out
to investigate whether these potential benefits can be realised
in practise and whether they can be usefully combined.

Section 2 presents both a general statement of the prob-
lem, and a description of the particular speaker turn-taking
scenario on which we have evaluated our systems. Section 3
describes our particle filtering implementation of a sequential
Bayesian approach to the solution. Results and conclusions
follow in Sections 4 and 5.

2. THE SOUND SOURCE TRACKING PROBLEM
2.1 The general problem

The general approach to the tracking problem can be de-
scribed as follows: We assume that we observe the acoustic
mixtures arriving at a pair of microphones set in a binaural
configuration. The microphones are fixed to a head that can
in general move with 6 degrees of freedom (translation and
rotation). The environment contains a number of potentially
moving sound sources which may also switch between being
active or inactive. The listener and sound source position pa-
rameters can be described by a state space that evolves over
time. Our belief about the state space is informed by locali-
sation cues extracted from the microphone data and potential
self-position information originating from other modalities.
We are particularly interested in inferring the sound source
position parameters, but may also be interested in the lis-
tener’s position.

2.2 The turn-taking meeting scenario

For this initial work we have concentrated on a constrained
case of the general tracking problem: tracking speaker turns
in a meeting scenario. Data from the CAVA database has
been used [6]. This data was recorded from the perspec-
tive of a moving ‘listener’ in a conversational situation with
five speakers. The ‘listener’ was fitted with a pair of bin-
aural in-ear microphones and was also wearing a helmet-
mounted tracking device so that the true head position could
be recorded. Using the head tracker information allows us to
model systems with access to self-position information.

We have focused on a particular session from the CAVA
database — Panel Meeting 1 (P1). Here the human listener

and 5 ‘actors’ are sitting around a table'. The listener is blind
folded and the actors take it in turn to speak. Listener head
movements have been induced by giving the listener the task
of monitoring speaker changes and always turning to face
the current speaker. The task for our system will be to use
the ITD cues in the binaural recording to estimate which of
the five speakers is active at any instant. (Note, although
the listener turns towards the active speaker, we do not make
use of this information in solving the task — our solution is
designed to work with arbitrary head motion).

2.3 Modelling the turn-taking meeting scenario

The meeting scenario was chosen for this initial study be-
cause it allows us to reduce the complexity of the general
model described in Section 2.1. We will model the scenario
with three main assumptions: i) that there are a fixed and
known number of speakers seated at fixed, known positions
and making only small scale movements around this position,
ii) that the listener’s head movement is mainly head rotation
in the horizontal plane, i.e. from —90° to +90° azimuths,
and iii) that one and only one person is speaking at a time.

Given the above assumptions, the CAVA meeting sce-
nario can be described by a relatively simple state space (see
Figure 1), modelled as

aé(BH,Gf,...Gg,cur), €))

where 67 is the absolute spatial angle (azimuth) of the head,
Glf is the absolute azimuth of speaker k&, K is the total number
of speakers, and cur € {1,...,K}, indicates which speaker
is speaking. This model allows for a fully dynamic setup,
where the listener’s head can be turning, and where each
sound source can be moving around independently. Follow-
ing our assumptions, 9,5 will be constrained to vary within a

small range of a known initial position, Gksl.

3. A PARTICLE FILTERING SOLUTION

The task of tracking the state of the meeting scenario lends
itself to a sequential Bayesian filtering approach, and in par-
ticular to a particle filtering implementation (see [7] for a tu-
torial and see Vermaak and Blake [8] for application of parti-
cle filtering to source tracking with a static listener.) In such
approaches, estimates of the system state (Eq. 1) are updated
at each time step by combining the previous state estimates
with new information learnt from the incoming set of ob-
servations. The update is governed by two statistical mod-
els: a system model which describes our prior belief about
how the system state evolves through time; a measurement
model which describes our belief about the observations we
are likely to make given the state of the system. In our case,
the observations are of two types, i) interaural time differ-
ence (ITD) estimates extracted from the microphone signals,
and ii) potentially noisy self-position estimates.

Section 3.1 describes the ITD observations and explains
how they may be enhanced through the use of pitch informa-
tion. Section 3.2 describes the system model and how it can
be informed by pitch track information. Section 3.3 describes
the measurement model which remains essentially the same
as in our previous work [4] but is included here for the sake
of completeness.

IThe distances between the listener and the speakers are around 90 cm.
The room is a typical large with Tgo = 300 ms.
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3.1 Observations

Both the pitch and localisation cues are extracted from an au-
ditory front-end simulating the cochlear frequency analysis
of the human ear. The model is implemented using a filter-
bank consisting of 64 overlapping bandpass gammatone fil-
ters, with centre frequencies spaced uniformly on the equiv-
alent rectangular bandwidth (ERB) scale [9] between 50 Hz
and 8000 Hz. The output of the filterbank is used to generate
cross-correlograms on lags corresponding to the range —90°
to +90° azimuth and auto-correlograms corresponding to a
pitch period of up to 15 ms.

The pitch-based fragments are generated from a signal
produced by averaging the left and right ear signals. After
averaging, the fragment generation procedure follows that of
the system designed for monaural signals presented by Ma
et al. [10]. Briefly, from analysis of the auto-correlation
delay patterns, multiple local pitch estimates are computed,
and a simple rule-based tracker is used to form potentially
overlapping pitch track segments that extend through time.
Each pitch track is then used to recruit a spectro-temporal
fragment (see Ma et al. for details).

The standard procedure of estimating ITDs (e.g. Jeffress’
model [11]; and more recently [12, 13]) is to identify one or
more peaks in the summary cross-correlogram (i.e. the cross-
correlogram summed over frequency channels). However,
the data are often very noisy and spurious peaks may arise
due to reverberation in the room or competing sound sources.
Figure 2 illustrates what the summary cross-correlogram
looks like for a 20 second portion of the P1 CAVA session.
The underlying ‘track’ of ITDs is plotted below the image.
The sweeps arising from when the listener’s head is turning
towards a new speaker are clear. However, it is also evident
that the data is challenging and that the largest peak in each
frame would not always capture the active speaker location.

Two strategies are employed to handle the summary
cross-correlogram noise. First, following [4], observations
are obtained by extracting the lags corresponding to the three
largest peaks for each frame rather than just the largest. The
measurement model (Section 3.3) then accounts for the fact
that two of these peaks are due to noise. Second, comput-
ing a summary cross-correlogram by summing the cross-
correlogram across time-frequency fragment regions — rather
than just across frequency — significantly reduces the de-
gree of noise [5]. So, when no fragments are present, the
peaks are extracted from the standard cross-correlogram in-
tegrated over all 64 frequency channels, but when a fragment
is present we extract peaks from a summary computed across
both the frame and the fragment.

3.2 System model

The system model determines how the state is progressed
at each time step: o; — o4+, i.e. a head angle model
(6" — 6! ,) and a speaker change model (Olit —6;,,,) The
system model assumes very small, i.i.d. Gaussian distributed
changes in head angle from frame to frame

~ 6/ +.4(0,05), )

with oy = 1 determined empirically. The speaker propa-
gation component of the system model is an obvious place
to exploit pitch information (e.g. pitch tracks). In [4] the
speaker changes controlled by cur were modelled by a two-
state model with a probability g of staying in the same

6tJrl
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Figure 2: Illustration of summed cross-correlogram for 20
seconds of data from the P1 CAVA session. The underlying
ITD ‘track’ has been manually drawn below.
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sate, i.e. continuing with the same speaker, and a probabil-
ity (1 — q) of changing state/speaker. In this paper we have
augmented this model such that the probability ¢ takes on
a different value depending on whether the current frame
is in a pitch track. Specifically we use ¢;c » = 0.998% and
Gre = 0.995% where 2 is the set of frames associated with
a pitch track, and &’ is the set of frames without an asso-
ciated pitch track. This ‘tightens’ up the speaker duration
model and inhibits particles changing speaker mid-track. As
previously, the propagated 6,5 141 Will be drawn from a Gaus-
sian distribution '

6011 ~ (6] ,03) 3)
where BkS/ and o} are the known mean position and standard
deviation of the speaker. va, was estimated from the data to
be about 2.

3.3 Measurement model

The measurement model expresses our belief about the like-
lihood of observations conditioned on the current state of the
system. The set of three cross-correlogram peak positions
that have been observed are mapped into azimuth estimates

(i.e. time delay is mapped onto angle), D 2 (D1,Dy,D3). We
assume that at most one of the candidate measurements cor-
responds to the true peak and that the rest are due to spurious
peaks, ‘clutter’ peaks. The true azimuth associated with the
system state «, i.e. the true location of the current speaker
relative to the listener’s head, is given by

Do 2 (80) = (85 0 — ), @)

2Determined in pilot experiments.
3Estimated from the data.
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Figure 3: Examples of speaker change segmentations in the
case of given, known self-position for different systems; the
top panel shows the true speaker segmentation.

The measurement model is used in the ‘update’ state of
the particle filtering algorithm, where the particles are up-
dated with the knowledge we can gain from the new obser-
vations. Hence, we are interested in the likelihood function,
p(D|a). We note that as Eq. 4 defines a deterministic map-
ping, the likelihood satisfies p(D|a) = p(D|Dy), which we
will base our development on. We assume that each of the
peak locations observed are independent, so that

N
p(D|Da) =[] p(Di|Dq). (5)
i=1

Following the approach in [8] we develop a description
for each p(D;|Dy,) based on the hypothesis that at most one
of the observed peaks will have arisen as a result of the true
state space and the remaining peaks are clutter. This is de-
scribed below by using the indicator variable c¢;, such that
¢; = T if D; is associated with the true source, and ¢; = C if
D; is associated with clutter. The likelihood for a measure-
ment from the true source is taken to be

p(DilDg,ci =T) = cq N (Di;Dg,05) for 2(D;), (6)
where = [—Diaxs Dmax] is the set of admissible azimuth
values for the microphones, and ¢y is a normalising con-
stant. Thus, a true source peak is assumed to be normally dis-
tributed around the true relative azimuth. The likelihood of a
clutter peak is assumed to be uniformly distributed within the
admissible interval, independent of the true relative azimuth

= U9(D;). (N

The overall likelihood is found by summing over the possible
hypotheses of true and clutter peaks [8].

In certain applications, information about the listener’s
position might be available and hence should be included in
the measurement model; Eq. 5 is thus expanded

p(Dilei =C)

p(D,H|a) HpD|Da p(H|Hgy) ®)
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Figure 4: Examples of speaker change segmentations in the
case of noisy self-position for different systems, the top panel
shows the true speaker segmentation.

A
= (90/)\)
and Hy, 2 (6); we have assumed that D and H are indepen-

dent given the state, . We take the observation noise of the
head position measurements to be normally distributed

where 6% is the observed self-position angle, H

p(H|Hg) ~ N (H;Hq, 0F). ©9)

The oy is set to match the variance used for generating the
simulated, observed head tracks.

4. RESULTS

At each frame the system outputs the value of the current
speaker, cur, which has the maximum posterior probability,
i.e. cur, is chosen as the value k € 1 : K which has the largest
total particle weight associated with it. The system is evalu-
ated by comparing the against the correct active speaker (as
given by the CAVA corpus’ manual annotation) and comput-
ing the diarization error rate (DER) as defined by [14]:

Number of frames incorrectly assigned

DER = % 100.

(10)
DER was measured on systems without access to self-
position information and on systems with access to self-
position information corrupted by varying degrees of noise.
The noisy self-position observations were obtained by
adding Gaussian noise with increasing standard deviation to
the true head tracks.

Examples of speaker segmentations output are shown in
Figure 3 (no access to the true self-position) and 4 (access
to noisy self-position, 6> = 20°). The true current speaker
segmentation (top panels) is compared against outputs by the
system for different usages of pitch information. Comparing
Figure 3 to 4 it is visually clear that results deteriorate as self-
position information is reduced, but that pitch information
can improve system performance.

The overall results from measuring DER on segmenta-
tions based on localisation and noisy self-position measure-
ments are presented in Figure 5. The systems have either

Total number of frames
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Figure 5: DER scores for different systems using pitch and
different degrees of simulated measurement noise in the self-
position observations. ‘NoSP’ denotes not supplying any
self-position information. Results are averaged over 10 runs
and using 40,000 particles. The error bars indicate the stan-
dard error of the mean.

access to no self-position information (indicated by ‘NoSP’
on the plot) or some measurements of self-position with a
noise variance varying from 90° down to 0° (that is, the true
head position is given to the system). For all the different
systems the DER values decreases from around 70 % down
to only 15-20 %. When the variance of the noise drops to
below 45 degrees the improvement in DER is very notice-
able. Regarding pitch, both using pitch to inform the system
model (system ii) and improving the ITD-based observations
by integrating across pitch-based fragments (system iii) pro-
vide significant improvements over the ITD-only baseline of
our previous system for all but the severest of self-position
noise settings. However, the two systems do not appear to
be complementary as combining them (system iv) does not
provide any significant additional benefit.

5. CONCLUSIONS

It has been demonstrated how pitch and location cues can
be usefully combined with noisy head-position estimates in
a particle filtering framework to track speaker changes from
the perspective of a moving listener. We have proposed two
different methods for using pitch; i) by enhancing the system
model to discourage speaker changes during voiced-speech
segments, and ii) by improving ITD observations through the
integration across pitch-based speech fragments. Although
overall performance decays rapidly as head-position noise
increases, adding pitch information reduces DER by about
10% absolute over a wide range of operating conditions. Us-
ing pitch to extract more reliable ITD observations bought
the biggest gains.
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