
GREEDY RLS FOR SPARSE FILTERS

Bogdan Dumitrescu, Ioan T̆abuş

Department of Signal Processing
Tampere University of Technology

PO BOX 553, 33101 Tampere, Finland
e-mail: bogdan.dumitrescu@tut.fi, ioan.tabus@tut.fi

ABSTRACT
We present an adaptive version of the greedy least squares
method for finding a sparse approximate solution, with fixed
support size, to an overdetermined linear system. The infor-
mation updated at each time moment consists of a partial or-
thogonal triangularization of the system matrix and of partial
scalar products of its columns, among them and with the right
hand side. Since allowing arbitrary changes of the solution
support at each update leads to high computation costs, we
have adopted a neighbor permutation strategy that changes
at most a position of the support with a new one. Hence, the
number of operations is lower than that of the standard RLS.
Numerical comparisons with standard RLS in an adaptive
FIR identification problem show that the proposed greedy
RLS has faster convergence and smaller stationary error.

1. INTRODUCTION

The interest in adaptive algorithms dedicated to sparse FIR
filters started about a decade ago [6], the main application
being echo cancellation. There are at least two types of ap-
proaches. The first, illustrated by [9, 10, 12] among others,
tries to use techniques that traditionally belong to field of
adaptive filters in order to decide what filter coefficients are
nonzero and hence should be updated. The second line of at-
tack, to which this paper belongs, uses ideas from the devel-
oping topic of sparse approximations. Before reviewing the
literature, let us first state the problem. The aim is to find re-
cursive least-squares (RLS) solutions to the overdetermined
system

Atxt ≈ bt (1)

wheret ∈ N is the current time; the matrixAt ∈ R
t×N and

the vectorbt are given. We want sparse solutions, namely
vectorsxt with at mostM nonzero elements, whereM ∈ N

is given, such that, ideally,‖bt −Atxt‖2 is minimized. In a
time-varying environment, a forgetting factorλ ≤ 1 is used
and, at each timet, the given part of (1) is built by

At =

[√
λ ·At−1
aT

t

]

, bt =

[√
λ ·bt−1

bt

]

, (2)

the vectorat ∈R
N and the scalarbt depending on data avail-

able at timet.
For illustration, we consider the standard identification

problem of the FIR system (channel) defined by

d(t) =
N−1

∑
i=0

h̃iu(t− i)+ η(t), (3)

Work supported by Tekes FiDiPro program. B.Dumitrescu is onleave
from Department of Automatic Control and Computers, ”Politehnica” Uni-
versity of Bucharest.

whereu(t), d(t), η(t) are the input, output and noise signals,
respectively; the true coefficientsh̃i are not available. Given
the input and output signals, the aim is to find a best fit model,
i.e. the filterH(z) = ∑N−1

i=0 hiz−i , having at mostM nonzero
coefficients, that minimizes the RLS criterion

J(t) =
t

∑
τ=1

λ t−τ |e(τ)|2, (4)

where

e(t) = d(t)−
N−1

∑
i=0

hiu(t− i) (5)

is the estimation error. In this context, the data appearingin
(2) are

at = [u(t) u(t−1) . . . u(t−N+1)]T , bt = d(t). (6)

In this paper, we present an adaptive version of the greedy
LS algorithm [3] (named also forward regression for subset
selection) for solving (1). In signal processing literature, the
algorithm is known as optimized orthogonal matching pur-
suit [11]. This algorithm (reviewed in section 2) selects the
nonzero elements of the solution one by one, at each step
choosing the position that mostly decreases the LS residual;
it gives typically better results than matching pursuit (MP)
and orthogonal MP (OMP), but has a higher complexity.
Adaptive versions of MP and OMP are given in [5] and [8],
respectively; however, the latter paper does not gives imple-
mentation details, simply stating that (1) is solved via OMP.
The alternative to greedy algorithms in the field of sparse
approximation is the use of a lasso criterion, in which the
(weighted) term‖h‖1 is added to the criterion (4) in order to
force a sparse solution. This is the technique used in [1, 2].
(A similar idea is employed with an LMS criterion in [4, 7].)

The challenge of such algorithms is to have better perfor-
mance (lower stationary error, shorter adaptation time) than
the standard RLS algorithm, with lower computation com-
plexity. The difficulty is that not only the coefficients of the
filter have to be adapted, but also its support. Our algorithm
(presented in section 3) achieves low complexity by letting
the support change withat mostone position at each time
t. This constraint is not likely to reduce performance, since
anyway the RLS algorithm is unable to react instantly to sud-
den changes in the channel. Numerical evidence presented in
section 4 confirms our claims.

2. GREEDY LS ALGORITHM

The greedy least squares algorithm finds a sparse approx-
imate minimizerx ∈ R

N to ‖b−Ax‖2, with A ∈ R
T×N,

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010 ISSN 2076-1465 1484

by selecting a subsetΦM of M columns ofA (named ac-
tive columns) and then minimizing‖b−ΦMz‖2. The vector
z contains the nonzero elements ofx, whose positions are
those of the columns fromΦM in A. The algorithm works
iteratively, starting withΦ0 = /0 and, at each stagek, adding
to Φk−1 the column minimizing the residual‖b−Φkζ‖2,
i.e. greedily finds the best LS solution toΦkζ ≈ b, given
that the firstk−1 columns ofΦk are those fromΦk−1. The
algorithm can be implemented using basically an orthogonal
triangularization with column pivoting, see also [3, sec. 4.3].

Algorithm GreedyLS
Input: A ∈ R

T×N, b ∈ R
T , M

0. p = [1 2 . . . N]
1. for k = 1 : M
1.1. j = arg max

ℓ=k:N
|A(k : T, ℓ)Tb(k : T)|/‖A(k : T, ℓ)‖

1.2. Swap columnsk and j of matrixA. Swappk↔ p j .
1.3. Find Householder reflectorUk that zeros thek-th

column ofA below the diagonal.
1.4. PutA←UkA, b←Ukb.
Output: the solution of the upper triangular systemA(1 :

M,1 : M)z = b(1 : M). The nonzero elements of the solution
arex(p(i)) = z(i), for i = 1 : M.

At iterationk, pivoting in step 1.2 ensures that the active
columns are in the firstk positions, their initial indices be-
ing stored in the firstk positions of the permutation vector
p; although the algorithm can be implemented without actu-
ally permuting the matrix, we use explicit permutations for
the sake of simpler presentation. Step 1.1 finds what column
should be added to the set of active columns by comparing
normalized scalar products between orthogonal projections
of the inactive columns ofA on the subspace(ImΦk−1)

⊥

(the orthogonal complement of the subspace spanned by the
active columns) with the current residual (this step could be
implemented more efficiently, but the presented form helps
further explanations). Initially, the residual is equal tob. The
orthogonal triangularization process ensures that the projec-
tions of the inactive columns on(ImΦk−1)

⊥ and the current
residual are obtained by simply ignoring the firstk−1 rows
of the currentA andb.

3. GREEDY RLS

We want now to give a recursive version of the greedy LS al-
gorithm, that, at timet, uses in an efficient manner the current
information (6) to produce an updated sparse LS solution to
system (1). The challenge is that not only the coefficients
of the solution may change, but also the support. We stress
that, once a support is chosen (in a way that can never be
guaranteed to be optimal), we want to compute the exact LS
solution with that support.

Let us assume that, before the data available at timet are
considered, a greedy LS algorithm has been run onAt−1,
bt−1. The algorithm may differ from that presented in sec-
tion 2 in the selection of the active columns, but is otherwise
identical. We denote hereA andb the output of the algo-
rithm, with

A =

[

R
0 F

]

, b =

[

c
g

]

}M
} t−1−M

︸︷︷︸

M
︸︷︷︸

N−M

(7)

The (fat) upper triangular matrixR ∈ R
M×N is A(1 : M,1 :

N) and the vectorc ∈ R
M is b(1 : M); they correspond to

”present” information. The firstM columns ofR are the
active ones, while the others are inactive. We assume that a
vectorp is available, containing a permutation of 1 :N, the
first M positions being the indices of the active columns. The
remaining rows ofA andb represent the ”past”, which is not
stored completely. Instead ofF andg, we have access (and
store) only the scalar products of columns (projected on the
current(ImΦM)⊥) with the residual

s = A(M +1 : t−1,1 : N)T ·b ∈ R
N

and the scalar products between columns

Ψ = A(M +1 : t−1,1 : N)T ·A(M +1 : t−1,1 : N).

We note that the firstM elements ofs are zero (the other
being equal toFTg) and thatΨ is a symmetric matrix
whose firstM rows (and columns) are zero (the lower right
(N−M)× (N−M) block isFTF); we will take this into ac-
count only when computing updating costs, but not for pre-
sentation. So, these scalar products correspond to the pastof
inactive columns. (The active columns have no past.)

We aim to design a greedy RLS algorithm in which the
information that is available and that will be updated at time
t consists of the variablesp, R, c, s andΨ. The nonzero
elements of the LS solution at timet are those of the solution
of the upper triangular systemR(1 : M,1 : M)z = c.

3.1 Update without permutation

Let us first discuss the case when the active set is not
changed, hence the permutationp is conserved at timet.
Similarly to (2), we append a new row toR andc by

R←
[√

λ ·R
aT

t (p)

]

, c←
[√

λ ·c
bt

]

, (8)

whereat (p) is the vectorat permuted according top, e.g.
the vector from (6) becomes[. . . u(t− pi +1) . . .]i=1:N. Due
to the arrow structure of the matrix, the triangular form can
be restored using Givens rotations, applied to bothR and
c. Finally, before retaining only the firstM rows ofR and
c, the last row must be used for updating the inactive scalar
products. The complete algorithm is the following.

Algorithm Nopermutationupdate
1. for k = 1 : M
1.1. Compute Givens rotationGk that zerosR(M+1,k).
1.2. PutR←GkR, c←Gkc.
2. Updates← λs+R(M +1,1 : N)Tc(M +1)
3. Ψ← λΨ+R(M +1,1 : N)TR(M +1,1 : N)
4. Delete rowM +1 of R andc
The current nonzero coefficients are given by the solution

of the upper triangular systemR(1 :M,1 :M)z = c. We note
that the multiplications in step 1.2 affect only rowsk and
M + 1, hence the cost of triangularization isO(MN). The
other expensive task is the update in step 3, whose cost is
3/2 · (N−M)2 operations (an operation is either an addition
or a multiplication).

3.2 Update with neighbor permutation

If, at time t, we allow all columns to compete for the first
M positions, the computational costs become very high. The
triangular form ofR may be completely destroyed by per-
mutations and its restoration (whose details are not yet clear,

1485

×× × ××
× × ××
× ××

×× × ××
(a)

∗ ∗ × ××
∗ × ××
× ××

∗ ∗ × ××
(b)

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
× ××

×× × ××
(c)

∗ ∗ ∗ ∗ ∗
× × ××
× ××

0 ∗ ∗ ∗ ∗
(d)

Figure 1: MatrixR during the first stage of orthogonal trian-
gularization with permutation (M = 3, N = 5).

since when an inactive column becomes active, the ”past”
information from the scalar productss andΨ must be taken
into account) requires at leastO(M2N) operations. Although
not yet discussed, the update of the scalar productss andΨ
should also be more complex than in the no permutation case.

However, it is unlikely that the changes in the system
structure are very sudden. Even if they are, the RLS algo-
rithm cannot react instantly. So, instead of allowing the per-
mutationp to change completely at each timet, we propose
the following strategy:
• for each positionk = 1 : M − 1 we let compete only

columnsk andk+1; so, the permutations that may occur
are only between neighbors in the active set;
• for the last active position (M), we allow all columns (po-

sitionsM to N) to compete; so, at most a single active
column (presumably the one with the least contribution
in decreasing the residual) may be replaced by an inac-
tive one.

Moreover, this permutation strategy needs not be applied at
each timet, but only at multiples of a small integerτ0; slower
changes in the system allow a largerτ0.

We discuss now the operations required by the neigh-
bor permutations. For illustration, consider the case of the
first two columns, detailed in Figure 1. Diagram (a) shows
the matrixR for M = 3, N = 5, after appending the row
µ = M + 1 corresponding to the data considered at timet;
nonzero elements are represented with×. If the first two
columns are swapped, the shape (b) is obtained (the nonzero
elements affected by the change are denoted by∗). Tri-
angularization in the first column implies the use of two
Givens rotations: the first zeros the element in position(2,1)
and produces the matrix (c), while the second zeros element
(µ ,1) and produces the desired structure (d). If no permuta-
tion is necessary, then one goes directly from (a) to (d) like
in algorithmNo permutationupdate.

The decision to permute two columns ofR is based on
on their norms and on their scalar products withc (see step 1
of algorithm GreedyLS). This implies only few operations,
as only two or three nonzero elements are involved in the
computation. So, the cost of the triangularization of the first
M−1 active columns is at most twice the cost of the triangu-
larization part of algorithmNo permutationupdate, i.e. still
O(MN). The following algorithm results.

Algorithm Neighborpermutations
1. for k = 1 : M−1
1.1. Denoteρ1 = [R(k,k) 0 R(µ ,k)]T

1.2.ρ2 = [R(k,k+1) R(k+1,k+1) R(µ ,k+1)]T

1.3. γ = [c(k) c(k+1) c(µ)]T

1.4. If |ρT
1 γ|/‖ρ1‖< |ρT

2 γ|/‖ρ2‖
1.4.1. Swap columnsk andk+1 ofR. Swappk↔ pk+1.
1.4.2. Compute Givens rot.̂Gk that zerosR(k+1,k).
1.4.3. PutR← ĜkR, c← Ĝkc.

1.5. Compute Givens rotationGk that zerosR(µ ,k).
1.6. PutR←GkR, c←Gkc.

3.3 Selection of last active column

After the triangularization with neighbor permutation of the
first M−1 columns, all remaining columns compete for the
M-th position, the last active one. The best column is that for
which the quantity

α(ℓ) =
|R(M, ℓ)c(M)+R(µ , ℓ)c(µ)+ s(ℓ)|

√

R(M, ℓ)R(M, ℓ)+R(µ , ℓ)R(µ , ℓ)+Ψ(ℓ,ℓ)
(9)

is maximum (withℓ = M : N). The numerator accounts for
the scalar product of columnℓ with the residual. Due to
the orthogonalization process in the firstM−1 columns, the
”present” contributes only with rowsM and M + 1 of R,
while the ”past” part of the product is completely contained
in s. Similarly, the denominator of (9) is the squared norm of
columns, for which the past is stored on the diagonal ofΨ.
The cost of the decision is onlyO(N−M) operations.

After permuting the best column in positionM, we have
to zero it below the diagonal with orthogonal transforma-
tions. ElementR(M + 1,M) can be zeroed with a Givens
rotation, which affects only the last two rows ofR andc,
as in the last iteration of algorithmNo permutationupdate.
However, if an inactive column became active, the whole
past must be zeroed. In (7), a column ofF was swapped
with columnM, which was zero. To make it zero, we need a
Householder reflector. Let us first review the basic operations
associated with a Householder reflector

U = I− (uuT)/β ,

defined by the vectoru ∈ R
m and the scalarβ .

Given a vectory ∈ R
m, the reflector that zeros all ele-

ments of the vector excepting the first is computed by the
operations

1. σ = sgn(y(1))
√

∑m
i=1y(i)2 =

sgn(y(1))
√

y(1)2 +y(2 : m)Ty(2 : m)
2. u(1) = y(1)+ σ , u(i) = y(i) for i = 2 : m
3. β = u(1)σ
The first element ofUy is−σ (the norm is conserved by

an orthogonal transformation).
If the reflectorU is multiplied with another vectorw,

then, taking into account that

w̃ = Uw = w− (uTw/β)u,

the computation of ˜w is performed by
1. θ = uTw/β = (u(1)w(1)+u(2 : m)Tw(2 : m))/β
2. for i = 1 : m
2.1. w̃(i)←w(i)−θu(i)
Returning to our problem, we work with (virtual) vec-

tors of unknown size, whose first element is that on rowM
of R (or c), which is known, and whose other elements are
columns ofF (or g), which are not directly available. The
vectory corresponds to columnM andw to any of the inac-
tive columns (or the right hand side of the linear system). We
note from both above algorithms that the computation of the
reflector and of the value ˜w(1) depend only on scalar prod-
ucts involving the unknown part (indices 2 :m) of the vectors
u (equal toy for these indices) andw. Hence, it is possi-
ble to compute the Householder reflector zeroing the past of

1486

the newM-th column and the element ˜w(1) using only the
information from the scalar productsΨ ands.

Finally, we have to update these scalar products. Let
w̃1 = Uw1, w̃2 = Uw2. Since multiplication with an or-
thogonal matrix conserves the scalar products, it results that

w̃1(2 : m)Tw̃2(2 : m) = w1(2 : m)Tw2(2 : m) (10)
+w1(1)w2(1)− w̃1(1)w̃2(1)

and hence the update of the scalar products can be com-
puted. Aggregating all information developed in this section,
we obtain the following algorithm.

Algorithm Lastactivecolumn
1. Puts← λs, Ψ← λΨ
2. j = argmaxℓ=M:N α(ℓ), see (9)
3. Swap columnsM and j of R. SwappM↔ p j , s(M)↔

s(j). Swap rows and columnsM and j of Ψ.
4. Compute Givens rotationG that zerosR(µ ,M).
5. PutR←GR, c←Gc.
6. σ = sgn(R(M,M))

√

R(M,M)2 +Ψ(M,M)
7. u(1) = R(M,M)+ σ , β = u(1)σ
8. SavevT = R(M,1 : N), γ = c(M)
9. R(M,M)←−σ
10. fork = M +1 : N
10.1.θ = (u(1)R(M,k)+Ψ(M,k))/β
10.2.R(M,k)←R(M,k)−θu(1)
11. θ = (u(1)c(M)+ s(M))/β
12. c(M)← c(M)−θu(1)
13. s← s+vγ−R(M,1 : N)c(M)+R(µ ,1 : N)c(µ)
14.Ψ←Ψ+vvT −R(M,1 : N)R(M,1 : N)T

+R(µ ,1 : N)R(µ ,1 : N)T

15. Delete rowµ of R andc
The most complex operation is the update of the scalar

products, requiring about 7/2(N−M)2 operations.

3.4 Initialization

Adding a regularization termδλ t‖h‖22 to the criterion (4)
amounts to the initializationA0 =

√
δIN, b0 = 0N×1. Hence,

we initialize the diagonal elements ofR with
√

δ and the
lower N−M diagonal elements ofΨ with δ , while c ands
are initialized with zero.

3.5 Review of the complete algorithm

The input parameters of the algorithm are the maximum de-
gree of the filterN, the maximum number of nonzero coef-
ficients M, the forgetting factorλ , the permutation update
lag τ0 and the regularization constantδ . The variablesR, c,
Ψ ands are initialized as above andp = [1 2 . . . N]. The
operations performed at timet are the following.

First, form (8). Ift is not a multiple ofτ0, no permutation
is performed and hence algorithmNo permutationupdate
is run. If t is a multiple of τ0, the algorithmsNeigh-
bor permutationsandLast activecolumnare run in succes-
sion.

The number of operations is
(

3
2

+
2
τ0

)

(N−M)2 +O(MN).

For comparison, the standard RLS algorithm requires about
6N2 operations for a filter of lengthN.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−2

10
−1

10
0

RLS

G−RLS

SI−RLS

Time (t)

A
 p

rio
ri

sq
ua

re
d

es
tim

at
io

n
er

ro
r

Figure 2: A priori squared estimation error forM = 12.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−3

10
−2

10
−1

10
0

RLS

G−RLS

SI−RLS

Time (t)

S
qu

ar
ed

 c
oe

ffi
ci

en
t e

rr
or

Figure 3: Squared coefficient error forM = 12.

3.6 Further algorithmic developments

Until now we have considered the numberM of nonzero co-
efficients to be fixed. However, it can be easily increased
or decreased by 1 at each timet. DecreasingM can be im-
plemented by putting columnM in the inactive set, after the
permutations of the active columns; rowM of R andc is
used to update the scalar productsΨ ands and then deleted.
IncreasingM is done by running an algorithm in the style of
Last activecolumnfor the selection of the(M + 1)-th col-
umn, which is then added to the active set; rowM +1 is ap-
pended toR andc. However, the difficulty lies in a method
to decide whenM should be changed. The decision can be
based on the norms of the residuals resulting from the differ-
ent choices ofM, which can be computed easily in the con-
text of the proposed algorithm (although not detailed here).
These issues are left for further research.

4. NUMERICAL RESULTS

To test the performance of the proposed algorithm, we have
used the following setup. The input-output data from (3)
are generated withu(t) ∈ N (0,1) and η(t) ∈ N (0,σ2);
we report forσ2 = 0.01, but similar results were obtained
for other values; the filter̃H(z) has a lengthN = 200 and
M̃ = 6 nonzero coefficients, in randomly chosen (uniformly
distributed) positions; the coefficients are generated from
N (0,1), then their vector normed to 1. The first 1000 out-

1487

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−2

10
−1

10
0

RLS

G−RLS

SI−RLS

Time (t)

A
 p

rio
ri

sq
ua

re
d

es
tim

at
io

n
er

ro
r

Figure 4: A priori squared estimation error forM = 6.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−4

10
−3

10
−2

10
−1

10
0

RLS

G−RLS

SI−RLS

Time (t)

S
qu

ar
ed

 c
oe

ffi
ci

en
t e

rr
or

Figure 5: Squared coefficient error forM = 6.

put samples are generated with a filter, the next 1000 with
another one; this corresponds to a sudden change in the chan-
nel. We report results for 1000 runs of the algorithms (dif-
ferent filters generated at each run). We compare three RLS
algorithms: our greedy algorithm (G-RLS), the standard one
with full support of sizeN (unaware of sparsity, named sim-
ply RLS) and the standard one on a support of sizeM con-
taining the trueM̃ positions and otherM− M̃ random ones
(named SI-RLS,sparsity informed RLS). The forgetting fac-
tor is λ = 0.99 for all algorithms.

We take firstM = 12, i.e. a value that is larger than the
true one. The a priori squared output estimation error (5)
(averaged over the 1000 runs) is shown in Figure 2. It is vis-
ible that G-RLS converges more quickly than RLS and has a
better stationary error (hence better misadjustment), closer to
that of SI-RLS. The squared estimation error averaged over
the last 100 samples is 2.22· 10−2 for RLS, 1.22· 10−2 for
G-RLS and 1.07·10−2 for SI-RLS; this translates into a gain
of about 5.25 dB of G-RLS over RLS. G-RLS was run with
δ = 0.5; larger values tend to slow the convergence, while
smaller values tend to increase the error in the first samples.
The time lagτ0 for performing permutations wasτ0 = 2;
increasingτ0 to 5 only slightly slows the convergence; for
τ0 = 10, the G-RLS algorithm still tracks faster than RLS.
Figure 3 shows the mean square error of the coefficient vec-
tor ‖h− h̃‖2 (whereh̃ ∈R

N is the vector of true filter coeffi-

cients, with‖h̃‖= 1, andh the estimated one, with zeros in
the inactiveN−M positions for G-RLS and SI-RLS).

A second round of experiments was performed changing
only the support size toM = 6, i.e. to the true value. The
squared estimation and coefficient errors are shown in Fig-
ures 4 and 5. The squared estimation error averaged over the
last 100 samples is 1.04·10−2 for G-RLS and 1.03·10−2 for
SI-RLS. The performance of G-RLS is much closer to that
of SI-RLS, compared to the caseM = 6. Occasionally, G-
RLS loses track of the true support, which explains the worse
steady-state behavior compared with SI-RLS. This happens
only if the filter has some small coefficients. Imposing a suf-
ficiently large threshold on the coefficients, e.g.|h̃i | ≥ 0.05,
leads to identical steady-state responses of G-RLS and SI-
RLS.

REFERENCES

[1] D. Angelosante and G.B. Giannakis. RLS-Weighted
Lasso for Adaptive Estimation of Sparse Signals. In
Int. Conf. Acoustics, Speech, Signal Proc., pages 3245–
3248, 2009.

[2] B. Babadi, N. Kalouptsidis, and V. Tarokh. Compari-
son of SPARLS and RLS Algorithms for Adaptive Fil-
tering. InIEEE Sarnoff Symp., 2009.

[3] S. Chen, S.A. Billings, and W. Luo. Orthogonal Least
Squares Methods and Their Application to Non-Linear
System Identification. Int. J. Control, 50(5):1873–
1896, 1989.

[4] Y. Chen, Y. Gu, and A.O. Hero III. Sparse LMS for
System Identification. InInt. Conf. Acoustics, Speech,
Signal Proc., pages 3125–3128, 2009.

[5] S.F. Cotter and B.D. Rao. The Adaptive Matching
Pursuit Algorithm for Estimation and Equalization of
Sparse Time-Varying Channels. In34th Asilomar Conf.
Sign. Syst. Comp., volume 2, pages 1772–1776, 2000.

[6] D.L. Duttweiler. Proportionate Normalized Least-
Mean-Squares Adaptation in Echo Cancelers.IEEE
Trans. Speech Audio Proc., 8(5):508–518, Sept. 2000.

[7] Y. Gu, J. Jin, and S. Mei.ℓ0 Norm Constraint LMS Al-
gorithm for Sparse System Identification.IEEE Signal
Proc. Letters, 16(9):774–777, Sept. 2009.

[8] G.Z. Karabulut and A. Yongacoglu. Estimation of
Time-Varying Channels with Orthogonal Matching
Pursuit Algorithm. In Symp. Adv. Wired Wireless
Comm., pages 141–144, 2005.

[9] R.K. Martin, W.A. Sethares, R.C. Williamson, and
C.R. Johnson, Jr. Exploiting Sparsity in Adaptive Fil-
ters.IEEE Trans. Signal Proc., 50(8):1883–1894, Aug.
2002.

[10] P.A. Naylor, J. Cui, and M. Brookes. Adaptive Al-
gorithms for Sparse Echo Cancellation.Signal Proc.,
86(6):1182–1192, 2006.

[11] L. Rebollo-Neira and D. Lowe. Optimized Orthogonal
Matching Pursuit Approach.IEEE Signal Proc. Letters,
9(4):137–140, April 2002.

[12] L.R. Vega, H. Rey, J. Benesty, and S. Tressens. A Fam-
ily of Robust Algorithms Exploiting Sparsity in Adap-
tive Filters. IEEE Trans. Audio Speech Lang. Proc.,
17(4):572–581, May 2009.

1488

