18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

GREEDY RLSFOR SPARSE FILTERS

Bogdan Dumitrescu, loanabus

Department of Signal Processing
Tampere University of Technology
PO BOX 553, 33101 Tampere, Finland
e-mail: bogdan.dumitrescu@tut.fi, ioan.tabus@tut.fi

ABSTRACT whereu(t), d(t), n(t) are the input, output and noise signals,
We present an adaptive version of the greedy least squargsspectively; the true coefficientsare not available. Given
method for finding a sparse approximate solution, with fixedhe input and output signals, the aim is to find a best fit model,
support size, to an overdetermined linear system. The-infof e_ the filterH (z) = ZN:Ol hiz ', having at mosM nonzero
mation updated at each time moment consists of a partial ogpefficients, that minimizes the RLS criterion
thogonal triangularization of the system matrix and of jpart
scalar products of its columns, among them and with the right LI 5
hand side. Since allowing arbitrary changes of the solution Ity = A Te(n, 4)
support at each update leads to high computation costs, we =1
have adopted a neighbor permutation strategy that change
at most a position of the support with a new one. Hence, th&Mere N—1
number of operations is lower than that of the standard RLS. e(t) =d(t) — 20 hu(t—i) (5)
Numerical comparisons with standard RLS in an adaptive i
FIR identification problem show that the proposed greed

RLS has faster convergence and smaller stationary error. s the estimation error. In this context, the data appearing

(2) are

1. INTRODUCTION ac=[ut)ut—1) ... ut—N+2)]7, b =d(t). (6)
The interest in adaptive algorithms dedicated to sparse FIR)]]
filters started about a decade ago [6], the main application In this paper, we present an adaptive version of the greedy
being echo cancellation. There are at least two types of ap-S algorithm [3] (named also forward regression for subset
proaches. The first, illustrated by [9, 10, 12] among othersselection) for solving (1). In signal processing literatuthe
tries to use techniques that traditionally belong to field ofalgorithm is known as optimized orthogonal matching pur-
adaptive filters in order to decide what filter coefficients ar suit [11]. This algorithm (reviewed in section 2) selects th
nonzero and hence should be updated. The second line of &nzero elements of the solution one by one, at each step
tack, to which this paper belongs, uses ideas from the devefhoosing the position that mostly decreases the LS residual
oping topic of sparse approximations. Before reviewing thdt gives typically better results than matching pursuit (MP
literature, let us first state the problem. The aim is to find reand orthogonal MP (OMP), but has a higher complexity.

cursive least-squares (RLS) solutions to the overdetarthin Adaptive versions of MP and OMP are given in [5] and [8],
system respectively; however, the latter paper does not givesampl

Ax; ~ by (1) _In_wr(]entaltion details, simplé/ ste}ting. trrat 1) iisofl_wlaéj vica OMP
. . . N e alternative to greedy algorithms in the field of sparse
\t,r\:ge\sgtct% rlli 'zrtge i%‘érr:ercvngeéntpg grast:)gé)llejtﬁns ﬁg(rjnel approximation is the use of a lasso criterion, in which the
vectorsx vvtith at%nosti\/l nonzero eFI)ements whehé € N Y(weighted) termlh| is added to the criterion (4) in order to
is given tsuch that, ideallyjb — Acxfz is miﬁimized Ina force a sparse solution. This is the technique used in [1, 2].
time—var'ying envirénment, e; forgtetiinzg factdr< 1is .used (A similar idea is employed with an LMS criterion in [4, 7].)
and, at each time the give’n part of (1) is built Ey The challenge of such algorithms is to have better perfor-
' mance (lower stationary error, shorter adaptation tima th

VA A 2 b the standard RLS algorithm, with lower computation com-
A= [ol L by = \/_b[11, (@ plexity. The difficulty is that not only the coefficients ofeth
t filter have to be adapted, but also its support. Our algorithm
the vectora; € RN and the scaldn, depending on data avail- (Presented in section 3) achieves low complexity by letting
able at timd. the support chfange Wlth.t mostone position at each time
For illustration, we consider the standard identificationt- This constraint is not likely to reduce performance, since
problem of the FIR system (channel) defined by anyway the RLS algorithm is unable to react instantly to sud-

den changes in the channel. Numerical evidence presented in
section 4 confirms our claims.

N-1
=3 hiu(t —1) +n(t), 3

2. GREEDY LSALGORITHM
Work supported by Tekes FiDiPro program. B.Dumitrescu ideawe . .
from Department of Automatic Control and Computers, "Raiitica” Uni- 1 e greedy least Squzres algorithm finds a Spars_l? Spprox-
versity of Bucharest. imate minimizerx € R" to |b — Ax||2, with A € R"*",

© EURASIP, 2010 ISSN 2076-1465 1484

by selecting a subsaby, of M columns of A (named ac- "present” information. The firsM columns of R are the

tive columns) and then minimizingb — ®mz||2. The vector active ones, while the others are inactive. We assume that a
z contains the nonzero elementssgf whose positions are vectorp is available, containing a permutation of M, the
those of the columns fron®)y, in A. The algorithm works first M positions being the indices of the active columns. The
iteratively, starting with®y = 0 and, at each stade adding remaining rows ofA andb represent the "past”, which is not

to ®y_; the column minimizing the residudlb — ®{||>, stored completely. Instead & andg, we have access (and
i.e. greedily finds the best LS solution #(~ b, given store) only the scalar products of columns (projected on the
that the firskk — 1 columns of®, are those fromby_;. The current(Im®y)*) with the residual

algorithm can be implemented using basically an orthogonal

triangularization with column pivoting, see also [3, se8]4 s=AM+1:t—-11: N)T -beRN

Algorithm Greedyl.S

Input: A c RTN ' b ¢ RT, M and the scalar products between columns

0.p=[12...N] T

1 fork=1-M T=AM+1:t-2,1:N)T-AM+1:t—1,1:N).

H . T . .

o argZTk%x|A(k.T,£) bk:T)l/ Ak T.0) We note that the firsM elements ofs are zero (the other

1.2. Swap columnkandj of matrix A. Swappx <+ p;. being equal toF'g) and that® is a symmetric matrix

1.3. Find Householder reflectd¥y that zeros thé-th whose firstM rows (and columns) are zero (the lower right
column of A below the diagonal. (N—M) x (N—M) block isFTF); we will take this into ac-

1.4. PutA — UyA, b < Uyb. count only when computing updating costs, but not for pre-

Output: the solution of the upper triangular systarfil : sentation. So, these scalar products correspond to thefpast
M,1:M)z =b(1:M). The nonzero elements of the solution inactive columns. (The active columns have no past.)
arex(p(i)) =z(i), fori=1:M. We aim to design a greedy RLS algorithm in which the

At iterationk, pivoting in step 1.2 ensures that the activeinformation that is available and that will be updated atim
columns are in the firsk positions, their initial indices be- t consists of the variablgs, R, ¢, s and®. The nonzero
ing stored in the firsk positions of the permutation vector elements of the LS solution at timare those of the solution
p; although the algorithm can be implemented without actuof the upper triangular systeR(1:M,1: M)z = c.
ally permuting the matrix, we use explicit permutations for
the sake of simpler presentation. Step 1.1 finds what colum®1 Update without permutation
should be added to the set of active columns by comparinge; ;s first discuss the case when the active set is not
normalized scalar products between orthogonal prOjestlonchanged' hence the permutatipnis conserved at time.

of the inactive columns oA on the subspacém®,_1)> Similarly to (2). we append a new row & ande b
(the orthogonal complement of the subspace spanned by the yto(2). PP ¢y

active columns) with the current residual (this step codd b VAR VA -c
implemented more efficiently, but the presented form helps R { al (p) } 5 [by })
further explanations). Initially, the residual is equabtoThe t

orthogonal triangularization process ensures that the@ro \yherea, (p) is the vectora; permuted according tp, e.g.

(8)

tions of the inactive columns afim®y_;)* and the current the vector from (6) becomés. u(t—pi+1) ...Ji—1Nn. Due
residual are obtained by simply ignoring the fikst 1 rows to the arrow structure of the matrix, the triangular form can
of the currentA andb. be restored using Givens rotations, applied to batkand
c. Finally, before retaining only the fir$#l rows of R and
3. GREEDY RLS c, the last row must be used for updating the inactive scalar

ducts. The complete algorithm is the following.
Algorithm Napermutationupdate

1. fork=1:M

1.1. Compute Givens rotatidgy that zeroR (M +1,k).

We want now to give a recursive version of the greedy LS alP"©

gorithm, that, at time, uses in an efficient manner the current

information (6) to produce an updated sparse LS solution to

system (1). The challenge is that not only the coefficients

0¥the sélu)tion may change, but also the support. We stress 1.2. PUR — GiR, ¢ < Gyc. T

that, once a support is chosen (in a way that can never be 2- Updates — As+R(M+ L% :N)"e(M+1)

guaranteed to be optimal), we want to compute the exact LS 3- ¥ —A¥+R(M+1,1:N)'R(M+1,1:N)

solution with that support. 4. Delete roaM + 1 of R andc _ _
Let us assume that, before the data available attiare The current nonzero coefficients are given by the solution

considered, a greedy LS algorithm has been rumgn,, ©Of the upper triangular systeRi(1:M,1:M)z = c. We note

bi_1. The algorithm may differ from that presented in sec-that the multiplications in step 1.2 affect only rowsand

tion 2 in the selection of the active columns, but is otheewis M + 1, hence the cost of triangularization@®MN). The

identical. We denote herd andb the output of the algo- Other expensive task is the update in step 3, whose cost is

rithm, with 3/2-(N— M)? operations (an operation is either an addition

or a multiplication).

A — R b=| € M
|0 F| " lg|}jt-1-M (7) 32 Updatewith neighbor permutation
M NoM If, at timet, we allow all columns to compete for the first

_ _ M positions, the computational costs become very high. The
The (fat) upper triangular matriR € RM*Nis A(1:M,1: triangular form ofR may be completely destroyed by per-
N) and the vector € RM is b(1 : M); they correspond to mutations and its restoration (whose details are not yat cle

1485

XX X XX kx XX X Kook ook ok kok ok kX 1.5. Compute Givens rotatid@y that zeroR (u, k).
X X XX ok X XX 0% % % % X X X X 1.6. PUR «— GyR, ¢ «— Gyc.
X X X X X X X X X X X X
XX X XX kx X XX XX XXX 0% % 3.3 Selection of last active column
(a) (b) (©) (d)

After the triangularization with neighbor permutation bét
first M — 1 columns, all remaining columns compete for the
M-th position, the last active one. The best column is that for
which the quantity

since when an inactive column becomes active, the "past” a (/) = [R(M, Oc(M) + Rk, Oc(p) +5(0)
information from the scalar productsand ¥ must be taken VRM, ORM,6) + R, O)R(p,) + P ((,0)
into account) requires at leatM2N) operations. Although _ _ 9)
not yet discussed, the update of the scalar produated @ IS maximum (with¢ = M : N). The numerator accounts for
should also be more complex than in the no permutation casie scalar product of columé with the residual. Due to
However, it is unlikely that the changes in the systemthe orthogonalization process in the fikdt- 1 columns, the
structure are very sudden. Even if they are, the RLS algo-Present” contributes only with rows! andM +1 of R,
rithm cannot react instantly. So, instead of allowing the pe While the "past” part of the product is completely contained

mutationp to change completely at each timave propose in's. Similarly, the denominator of (9) is the squared norm of
the following strategy: columns, for which the past is stored on the diagonaPof

The cost of the decision is ony(N — M) operations.
After permuting the best column in positidw, we have
to zero it below the diagonal with orthogonal transforma-
tions. ElemenR(M + 1,M) can be zeroed with a Givens
" i . . _rotation, which affects only the last two rows Bf andc,
sitionsM to N) to compete; so, at most a single active ,q i, he |ast iteration of algorithiNo_permutationupdate
column (presumably the one with the least contributiory ever, if an inactive column became active, the whole
in decreasing the residual) may be replaced by an inagsast must be zeroed. In (7), a column®fwas éwapped
tive one. - . ~ with columnM, which was zero. To make it zero, we need a
Moreover, this permutation strategy needs not be applied #ouseholder reflector. Let us first review the basic openatio
each timd, but only at multiples of a small integes; slower associated with a Householder reflector
changes in the system allow a largegr
We discuss now the operations required by the neigh- U=1I-(uu')/B,
bor permutations. For illustration, consider the case ef th
first two columns, detailed in Figure 1. Diagram (a) showsdefined by the vectan € R™ and the scalag.
the matrixR for M = 3, N = 5, after appending the row Given a vectory € R™, the reflec_tor @hat zeros all ele-
U =M + 1 corresponding to the data considered at ttme ments.of the vector excepting the first is computed by the
nonzero elements are represented with If the first two ~ Operations
columns are swapped, the shape (b) is obtained (the nonzero 1. o = sgny(D))vytiy(i)? =
elements affected by the change are denoted)by Tri- sgr(y(l))\/y(1)2+y(2:m)Ty(2 'm)
angularization in the first column implies the use of two 2. u(l)=y(1)+0, ui)=y(i)fori=2:m
Givens rotations: the first zeros the element in positiyd) 3.8=u(l)o
and produces the matrix (c), while the second zeros element The first element oy is —o (the norm is conserved by
(M,1) and produces the desired structure (d). If no permutaan orthogonal transformation).
tion is necessary, then one goes directly from (a) to (d) like |f the reflectorU is multiplied with another vectow,

Figure 1: MatrixR during the first stage of orthogonal trian-
gularization with permutation = 3, N = 5).

e for each positionk =1 : M — 1 we let compete only
columnsk andk + 1; so, the permutations that may occur
are only between neighbors in the active set;

o for the last active positioriM), we allow all columns (po-

in algorithm!\lp_permutationupdate . then, taking into account that
The decision to permute two columnsBfis based on
on their norms and on their scalar products véit{see step 1 W=Uw=w— (u'w/B)u,

of algorithm GreedyLS). This implies only few operations,

as only two or three nonzero elements are involved in théhe computation ofv’is performed by

computation. So, the cost of the triangularization of tht fir 1.6= u'w/B = (u()w(l)+u2:mTw(2:m))/B
M — 1 active columns is at most twice the cost of the triangu- 2. fori=1:m

larization part of algorithnNo_permutationupdate i.e. still 2.1.W(i) < w(i) — Bu(i)

O(MN). The following algorithm results. Returning to our problem, we work with (virtual) vec-
Algorithm Neighbarpermutations tors of unknown size, whose first element is that on Mw
1.fork=1:M—-1 of R (or ¢), which is known, and whose other elements are
1.1. Denotepy = [R(k,k) OR(u,K)]" columns ofF (or g), which are not directly availablg. The
1.2.p = [R(k k+1) R(k+1,k+1) R(p,k+1)]T vectory corresponds.to colurrml.andw to any of the inac-

_ T tive columns (or the right hand side of the linear system). We
1.3.y = le(k) e(k+1) ()] note from both above algori i
T T gorithms that the computation of the
L4 1f|py vi/llpall < 1Pz v1/Il2ll reflector and of the value/(1) depend only on scalar prod-
1.4.1. Swap columnisandk +1 0f R. Swapp < Pt1- ycts involving the unknown part (indices &) of the vectors
1.4.2. Compute Givens roGy that zeroR (k+ 1,Kk). u (equal toy for these indices) ane. Hence, it is possi-
1.4.3. PuR «— G¢R, c «— Ggc. ble to compute the Householder reflector zeroing the past of

1486

the newM-th column and the element(1) using only the
information from the scalar producs ands.

Finally, we have to update these scalar products. Let

w1 = Uwy, wo = Uwy. Since multiplication with an or-
thogonal matrix conserves the scalar products, it regudis t
W1(2:m) "W (2:m) =wy(2:m) wy(2:m) (10)
+w1(1)wa(1) — Wi (1)W(1)

and hence the update of the scalar products can be com-

puted. Aggregating all information developed in this satti
we obtain the following algorithm.
Algorithm Lastactive.column
1. Puts < As, ¥ «— AW
2. j=argmax_u:.Nn a(£), see (9)
3. Swap column# andj of R. Swappu < pj, s(M) <
s(j). Swap rows and columrd andj of .
. Compute Givens rotatio& that zeroR (u,M).
. PutR — GR, ¢ «— Gec.
.0 = sgr(R(M,M))/R(M,M)Z+ & (M, M)
u(l)=R(M,M)+0,B=u(l)o
. Savev' =R(M,1:N), y=c(M)
R(M,M) — —0
10. fork=M+1:N
10.1.6 = (u(1)R(M,k) + T(M,k))/B
10.2.R(M,k) — R(M,k) — Bu(1)
11.8 = (u(1)c(M)+s(M))/B
12.¢(M) — ¢(M) — Bu(1)
13.s —s+vy—R(M,1:N)c(M)+R(u,1:N)c(u)
149 « T +vv' —R(M,1:N)R(M,1:N)T
+R(K,1:N)R(y,1:N)T
15. Delete ronu of R andc

OO0 ~NO O~

The most complex operation is the update of the scalar

products, requiring about/2(N — M)? operations.

3.4 Initialization

Adding a regularization terndAt||h||3 to the criterion (4)
amounts to the initializatioA o = v/3Iy, bg = Onx1. Hence,

we initialize the diagonal elements & with v/ and the
lower N — M diagonal elements o with d, while ¢ ands
are initialized with zero.

3.5 Review of the complete algorithm

The input parameters of the algorithm are the maximum de

gree of the filtelN, the maximum number of nonzero coef-
ficients M, the forgetting factoir, the permutation update
lag 1o and the regularization constadit The variableR, c,

W ands are initialized as above anel=[1 2 ... N]. The
operations performed at tinteare the following.

First, form (8). Ift is not a multiple ofry, no permutation
is performed and hence algorithiio_permutationupdate
is run. If t is a multiple of 19, the algorithmsNeigh-
bor_permutationsaandLastactive.columnare run in succes-
sion.

The number of operations is

(:—; - ?20) (N—M)2+O(MN).

10° |

107

A priori squared estimation error

107}

I I I I I
1000 1200 1400 1600 1800

Time (t)

I
800 2000

Figure 2: A priori squared estimation error fidr= 12.

10°

107"

107 H

Squared coefficient error

10°F

SI-RLS

I ! ! I T
1000 1200 1400 1600 1800

Time (t)

600 800 2000

Figure 3: Squared coefficient error fior = 12.

3.6 Further algorithmic developments

Until now we have considered the numidérof nonzero co-
efficients to be fixed. However, it can be easily increased
or decreased by 1 at each timeDecreasingv can be im-
plemented by putting columi in the inactive set, after the
permutations of the active columns; rdw of R andc is
used to update the scalar produd#ts@nds and then deleted.
IncreasingM is done by running an algorithm in the style of
Lastactivecolumnfor the selection of théM + 1)-th col-
umn, which is then added to the active set; fdw- 1 is ap-
pended taR andc. However, the difficulty lies in a method
to decide whem should be changed. The decision can be
based on the norms of the residuals resulting from the differ
ent choices oM, which can be computed easily in the con-
text of the proposed algorithm (although not detailed here)
These issues are left for further research.

4. NUMERICAL RESULTS

To test the performance of the proposed algorithm, we have
used the following setup. The input-output data from (3)
are generated withi(t) € .#7(0,1) and n(t) € .4(0,02);

we report foro? = 0.01, but similar results were obtained
for other values; the filteH(z) has a lengtiN = 200 and

M = 6 nonzero coefficients, in randomly chosen (uniformly

For comparison, the standard RLS algorithm requires aboutistributed) positions; the coefficients are generatednfro

6N? operations for a filter of lengtN.

A4(0,1), then their vector normed to 1. The first 1000 out-

1487

cients, with| h|| = 1, andh the estimated one, with zeros in
the inactiveN — M positions for G-RLS and SI-RLS).

A second round of experiments was performed changing
only the support size tM = 6, i.e. to the true value. The
squared estimation and coefficient errors are shown in Fig-
ures 4 and 5. The squared estimation error averaged over the
last 100 samples is@4-10~2 for G-RLS and 103- 102 for
SI-RLS. The performance of G-RLS is much closer to that
of SI-RLS, compared to the casé = 6. Occasionally, G-
RLS loses track of the true support, which explains the worse
steady-state behavior compared with SI-RLS. This happens
only if the filter has some small coefficients. Imposing a suf-
ficiently large threshold on the coefficients, glg| > 0.05,
leads to identical steady-state responses of G-RLS and SI-
RLS.

A priori squared estimation error

I I I I I
1000 1200 1400 1600 1800

Time (t)

L I
600 800 2000

Figure 4: A priori squared estimation error fidr= 6.
REFERENCES

[1] D. Angelosante and G.B. Giannakis. RLS-Weighted
Lasso for Adaptive Estimation of Sparse Signals. In
Int. Conf. Acoustics, Speech, Signhal Prgages 3245—
3248, 2009.

B. Babadi, N. Kalouptsidis, and V. Tarokh. Compari-
son of SPARLS and RLS Algorithms for Adaptive Fil-
tering. INIEEE Sarnoff Symp2009.

[3] S. Chen, S.A. Billings, and W. Luo. Orthogonal Least
Squares Methods and Their Application to Non-Linear
System Identification. Int. J. Control 50(5):1873—
1896, 1989.

[4] Y. Chen, Y. Gu, and A.O. Hero Ill. Sparse LMS for
System Identification. Ihnt. Conf. Acoustics, Speech,
Signal Proc, pages 3125-3128, 2009.

[5] S.F. Cotter and B.D. Rao. The Adaptive Matching

Pursuit Algorithm for Estimation and Equalization of

Sparse Time-Varying Channels. 3dth Asilomar Conf.

Sign. Syst. Compvolume 2, pages 1772-1776, 2000.

D.L. Duttweiler. Proportionate Normalized Least-

Mean-Squares Adaptation in Echo CanceletEEE

(2]

Squared coefficient error

SI-RLS

600

I I I I I
1000 1200 1400 1600 1800

Time (t)

I I
0 200 400 800 2000

Figure 5: Squared coefficient error figk = 6.

put samples are generated with a filter, the next 1000 with 6]
another one; this corresponds to a sudden change in the chanL-

nel. We report results for 1000 runs of the algorithms (dif- Trans. Speech Audio Pro&(5):508-518, Sept. 2000.
ferent filters generated at each run). We compare three RL%] Y Gu. J. Jin. and S. Meitn Norm Constréint LMS Al
. y Jo , . 0 -

algorithms: our greedy algorithm (G-RLS), the standard one) N]

with full support of sizeN (unaware of sparsity, named sim- gorithm for Sparse System IdentificatioEE Signal

ply RLS) and the standard one on a support of sizeon- Proc. Letters 16(9):774~777, Sept. 2009.

taining the trueM positions and othel — M random ones [8] G.Z. Karabulut and A. Yongacoglu. Estimation of

(named SI-RLSsparsity informed RUSThe forgetting fac- Time-Varying Channels with Orthogonal Matching
Pursuit Algorithm. InSymp. Adv. Wired Wireless

torisA = 0.99 for all algorithms.
We take firstM = 12, i.e. a value that is larger than the Comm, pages 141-144, 2005.
R.K. Martin, W.A. Sethares, R.C. Williamson, and

true one. The a priori squared output estimation error (5)[9]
C.R. Johnson, Jr. Exploiting Sparsity in Adaptive Fil-

(averaged over the 1000 runs) is shown in Figure 2. It is vis-
ible that G-RLS converges more quickly than RLS and hasa ters.|EEE Trans. Signal Prog50(8):1883-1894, Aug.
2002.

better stationary error (hence better misadjustmentecio
P.A. Naylor, J. Cui, and M. Brookes. Adaptive Al-

that of SI-RLS. The squared estimation error averaged ovg o]
the last 100 samples isZ2- 10 2 for RLS, 122.10 2 for gorithms for Sparse Echo CancellatioBignal Proc,
86(6):1182-1192, 2006.

G-RLS and 107-102 for SI-RLS; this translates into a gain
of about 525 dB of G-RLS over RLS. G-RLS was run with J11] L. Rebollo-Neira and D. Lowe. Optimized Orthogonal

0 = 0.5; larger values tend to slow the convergence, whil

smaller values tend to increase the error in the first samples
The time lagty for performing permutations wag = 2;
increasingry to 5 only slightly slows the convergence; for (12]
7o = 10, the G-RLS algorithm still tracks faster than RLS.
Figure 3 shows the mean square error of the coefficient vec-
tor |h —h||? (whereh € RN is the vector of true filter coeffi-

1488

Matching Pursuit ApproachEEE Signal Proc. Letters
9(4):137-140, April 2002.

L.R. Vega, H. Rey, J. Benesty, and S. Tressens. A Fam-
ily of Robust Algorithms Exploiting Sparsity in Adap-
tive Filters. IEEE Trans. Audio Speech Lang. Proc.
17(4):572-581, May 2009.

