18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

MULTISCALE ZERO-CROSSING STATISTICSOF INTRINSIC MODE FUNCTIONS
FOR WHITE GAUSSIAN NOISE

Sileyman Baykut , Tayfun Aty

Department of Electronics and Communications Engineetstgnbul Technical University,
34469, Istanbul, Turkey
phone: + (90) 212 285 3568, email: baykut@itu.edu.tr, tagkgul@itu.edu.tr

ABSTRACT In this paper, instead of Freating the intrinsic mpde as a
In this paper, the statistical characteristics of zercsinyg whole (the mode energies), first, these modes are divided int

intervals and zero-crossing amplitudes (the time inteavel small intervals, namely ZC intervals, and the statistical b

the absolute value of extrema between two successive zerB@Vior of these intervals is investigated. Two ZC vectoes ar
crossings) of intrinsic mode functions of white Gaussiai'Med; 1) Zero Crossing Interval (ZCl) (the time differenc

noise are studied. Intrinsic mode functions are extracyed bP€WEen two successive zero-crossings), 2) Zero Crossing
Amplitude (ZCA) (the absolute value of the extrema point

empirical mode decomposition method. Numerous simula- . - ) -
b b abetween two successive zero-crossings). Simulationsare ¢

tions are conducted and the probability distribution fiorcs y h o ; o
of zero-crossing intervals and amplitudes are obtained- Si ried out to characterize the statistical behaviors (theildis

ulation results are included. These findings are importnt tfions and the relationship between ZCl and ZCA) of these

determine the statistical significance of IMFs. These whit¢/€ctors for normally distributed white noise. Once the ehar

noise-only case statistical characteristics can be usesige ~ 2cteristics are determined, they can be used for a noisy sig-
nal detection and/or signal/inoise separation and an efficie @ {0 label each ZC intervals as noise-component or signal-
noise reduction can be achieved. component which then yield a convenient noise/signal sepa-

ration.
1. INTRODUCTION In S.ection 2,EMD algorithm s briefly explaineq and_ZCs
are defined. Experiments and observations are given in Sec-
Zero-crossings (ZCs) reveal rich information about thealg tion 3 and the paper is concluded in Section 4.
characteristics with relatively low computational load 2].
For example, ZC counts in a signal gives coarse but fast es- 2 BACKGROUND
timation of the fundamental frequency without requiring an '
spectral analysis. ZCs are among the most meaningful fe@1 Empirical M ode Decomposition
tures in a signal. Statistics of ZCs of random functionshsuc
as normally distributed, band-limited noise, have beed-stu
ied starting from early 40’s [3]. Due to a lack of analytical
expressions of the ZC statistics, this is still an ongoing re
search topic in diverse fields [4, 5].
It is relatively easier and meaningful to characterize th
signal by the ZC statistics when the signal has narrow an

band-pass spectrum, which is the case in Intrinsic Ivmdwaveform which contains the signal details at the finest time

Functions (IMF) of white noise. IMFs are obtained by Em- . X A X

pirical Mod(e De)composition (EMD) which is a data—é/riven scales (highest frequencies). This IMF is subtracted fiuen t
and iterative method [6]. In this study, instead of the nois¢®"'9inal signal, and the steps are repeated on the remainder
signal itself, we investigate the statistical charactessof ~ >'9nal in order to obtain the next IMF. The same procedure

zero-crossings of IMFs of white noise via simulations. The' applied iteratively until some stopping criteria ardstid

characterization of the ZCs of IMFs can be used in variouélulr]ﬁbg\r/lgfse?(;?enmaa”og;]kzsag?" dzt?]rg-nmu(renabnersglfn?(ljo\ivcr;g;esiahes
applications such as noise reduction or signal detection i P 9

noise. It can also be used to determine the IMF significanc@'€ €qual or differ by 1 at most. The signdt) is decom-
level which is important to assign the IMFs corresponds tcPOSEd inta< IMFs by EMD as:
signal itself or to noise component. K

Statistics of IMF amplitudes of white noise and fractional _
Gaussian noise are studied in [7] and in [8, 9]. Since EMD is X(t) = i;dk(t) +r (1)
an empirical method with no compact analytical definition,
most of the studies are done by numerical simulations. Th
results are important for better understanding of the EM
procedure. These results can also be used for denoising R
detrending of noisy signals [10] by comparing the IMF ener-
gies along scales with the ones obtained from the noise-onlé/
case. €

EMD is a signal decomposition methods that extracts the in-
trinsic components from the signal without using any a prior
fixed basis as in Fourier or wavelet analysis [6]. Itis anlidea
tool to analyze nonstationary and nonlinear processes. The
ain procedure of EMD is called “sifting procedure”, where

e iterations isolate the fast oscillations locally inéinAf-

er the first sifting procedure, the first IMF is obtained as a

ere, dg(t) is the K" IMF and r(t) is the residue signal.
ach IMF lays at lower frequency regions locally in time-
Equency domain than the previous one.

EMD acts as a dyadic filter bank for white noise [7, 9]. It
parates the white noise into intrinsic modes (IMFs) where
the mean periods are increasing by the power of 2 as the scale
S. Baykut's work is partly supported byJBITAK-B IDEB. decreases.
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Figure 1: #' Column:IMFs of single realization of white noise?®Column: ZCl histograms and the lognormal fits9 3
Column: ZCA histograms and the Weibull fits (x-axis is in teraf number of data points).

2.2 Zero-crossings k=1,...Ky). The number of IMFsKy, in a wide band sig-

It is already shown that IMFs of white noise are normallyn@l €guals tdogN approximately [11]. However, for the
distributed [7, 9]. In our work, apart from the IMF amplitude selected data Iength,_ th? algorlthm yleld_s different numbe
distribution, we experimentally examine the statistic$hef of IMFs for each realization of noise varying between 9-12.

zero-crossing intervals and the zero-crossing amplitedes Higher indexIMFs covers very narrow band at low frequency
IMEs of white noise region and have negligible amplitudes compared to the ones

; ;th ; th . with lower indices. Therefore, only the first 9 IMFs are taken
Let z[i] be thei™ ZC instant ofk'™™ IMF (d(t)): into account for the analysis for each realization. The frst
z[i] = {ti|dk(t}) = O}, i=1,2,.., % (2) IMFs of a single realization of white noise are plotted in the

) N 15t column of Fig. 1. The zero-crossing poihtare deter-
where 2 is the total number of ZCs &" IMF. Then, ZC  mined by finding the sign-change-points in the signals, then

intervalsty[i] are expressed as: ZCl and ZCA signals are constructed for each IMF.
Tli] = 2di + 1) - zdi] () 31 zci Distributions
where the ZC amplitudes|i] are expressed as below: ZCls of each specific IMF obtained from different realiza-

. : . tions are grouped in order to construct the main ZCl vector.
ai] =max(|dk(t)]) | t€ [, adi+1]] () The histograms of ZCls are obtained and then individually
fori=1,2,..., % —1. normalized so that the area under the histogram bars equals
As stated in [12], the positions of multi-scale zero-t0 unity. In Fig. 1, the normalized histograms of ZCls are
crossings may provide information of the signal charasteri plotted in the 29 column. Several distribution functions (i.e.,
tics. However, such representation is not stable unlessaa meNormal, Lognormal, Rayleigh, Weibull, Gamma, Beta, Ex-
sure regarding the size of the signal between successige zdreme Value, T Location-Scale, etc.) are fit to histogrants an
crossings are not provided. Therefore, in this paper, kssid it is observed that lognormal distribution gives the minimu
the ZC intervals, ZC amplitudes are also taken into consideffit error, i.e., each ZCl data (except the ones that belong to

ation as a size measure. the B IMF, explained in the next paragraph) approximately
fits the lognormal distribution. The fitted lognormal densit
3. EXPERIMENTSAND OBSERVATIONS functions can be seen in the same plots as solid lines. IMFs

at lower frequency regions (higher indices) have less numbe

In order to establish the statistical characteristics ofsZahd of zero crossings, so the distribution of these ZCls are less

ZCAs of IMFs of white noise, numerical simulations are con-
ducted. For the experiments] = 1000 independent white INote that, since we deal with discrete time signals, the $igoes not
noise processes are synthesized with the lengtk of 212, always necessarily equals zero at a zero-crossing poine sign of the

The IMFs of each realizations are obtained by EMD algo-ignal can change from minus(plus) to plus(minus) withouirigaa value
of zero. So the zero-crossing points can be determined by @ssimple

rithm referred a81|((m) [N (with m=1,..M; n=1...N and linear fit between two points where the signal changes sign.
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smooth which cause a deviation from lognormal distribution of a particular IMF. The mean of each group is also shown in

If the data length is long enough, the ZCI sequences of highd¥fig. 3 as circles in order to observe the relationship. Tghou

indice IMFs will behave similar to lower indice IMFs. visual inspection one can suggest that there is approxiynate
The normalized histogram of ZCls of th& IMF has 2 linear relationships along scales:

peaks as shown in the first plot of2column in Fig. 1. — ~ -

ZCls of the £ IMF behave different than the ones belong log. (&) =alog, () +¢ ©)

to other IMFs. This difference is basically coming from dif- wherec is a constant. When a line is fitted to the data, the

ferent power spectrum behavior of th& IMF. It is known  slope of the fitted line is estimated a€.48214 (which is

that IMFs’ power spectra have band-pass shape which aflose t0—0.5). It is stated in [7] that there is a simple linear

identical on semi-logarithmic scale [8], but the spectrum o relation between IMF energiegy and average IMF period,

15t IMF has a high-pass shape that covers higher half of thék as:

frequency region. Furthermore, there is non-negligibéle log2Ex = b—l0g2Tk (7)

age to the lower frequency bands that causes a wide range@hereb is constant. Since IMFs are sinusoid-like signals,

ZCls. - alm
Mean periods of IMFs increase by power 2 as the IMF or-Ve can approximate the energy of each IMF 3§ and the

der increases [8, 9]. This relationship evokes a scaling-pro average IMF period asti” whered andTy are the means of

erty between ZCl density functiongy(1)) of IMFs: tz|c():r? (%n;ezlocllsl_respectlvely. These approximations in equa-

pi(1) = p* M pi(pk 1) 5) logs(3%) = % - %Iogz(r_k) ®)
Here the scaling factq is approximately 2. In Fig. 2, nor- Note that we obtain the relationship in equation (6) vaith:
malized pdf of ZCls for 9> k > k > 2 are given where they 0.5 andc = 251, The slope of the straight line becomes

approximately overlap. The shape parameters of lognormal 0.5 (which is already found as0.48 by linear fit in Fig.
fits are the same and the scale parameters diffén (2). 3).

log,{a,)

0 2 4 6 8 10

Figure 2: Normalized ZClI lognormal pdfs (x-axis is in terms - log(z,)
of number of data points).

Figure 3: ZCl versus ZCA in logarithmic scale (The mean
o values of each group as black circles. The slope of the linear
32 ZCA Distributions fit is estimated as -0.48214).
In this section the distribution functions of ZCAs are sadli o ]
Determination of the statistical characteristics of maxim 34 Periodic Signal plus Noise Example

(or minimum) points of some real data has critical impor-when the signal of interest consists of both noise and some
tance such as sea surface wave heights used in coastal engériodic components, the ZCl distributions reveal anomaly
neering. For example in [13], the distribution of the maximaregarding “corruption” at specific IMFs. This is shown in
of the sea-surface displacement is derived which approxia simple example where the signal is white noise corrupted
mates to Rayleigh distribution when the signal is normallya sinusoidal signal with the angular frequeray = 0.041T
distributed and has a narrow-band spectrum. Since IMFRghere the signal-to-noise ratio is 5dB. Obtained IMFs are
obtained from white noise are also normally distributed anglotted in the ¥ column in Fig. 4. The ZCl and ZCA distri-
narrow-band, a Rayleigh-like distribution is expected. butions of 29 to 5" IMFs are given in Fig. 4 in the™ and

ZCA vectors are constructed in a similar fashion as ZCl§pg 3d ¢olumn, respectively. The lognormal and Weibull fits
defined above. The normalized histograms of ZCAs arg, poise-only case are also shown in the figures as black
given in the & column in Fig. 1. In these data sets, Weibull |ines for comparison.

distribution ha? the minimum fit. Although the fit error is  peviations from lognormal distribution for ZCl and devi-
higher in the $IMF compared to the remaining IMFs, the 4tjons from Weibull distribution for ZCA are observed &t 4
distribution still obeys the Weibull distribution. and 8" IMFs, which means that the periodical signal com-
ponents are present in these two IMFs. Here, the periodical
33 ZClvsZCA signal is broken into 2 IMFs because of “mode mixing” phe-
In this section, the relationship between ZCl and ZCA fornomenon which means that different modes of oscillations
each IMF is investigated. In Fig. 3, logarithm of ZCAs arecoexist in a single IMF. Clearly, by using these histogram,
plotted versus logarithm of ZCls. Point groups in the samene can create a simple algorithm to determine which ZC in-
color are the scattered distributions of each ZCl and ZCAerval belongs to signal or to noise by using these histogram
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Figure 4: ' Column:IMFs of White Noise €050.047tt); 24 Column: ZCl histograms of"® to 5" IMFs (the lognormal fits

of noise-only case is also shown as black lines for compa)yi$¥ Column: ZCA histograms of"® to 5" IMFs (the Weibull
fits of noise-only case is also shown as black lines for coiapay (x-axis is in terms of number of data points).

4. CONCLUSION

In this paper, the distribution of ZCls and ZCAs of white
Gaussian noise IMFs are obtained by numerical analyses. It
is observed that ZCls (except IMF#1) obey lognormal dis-
tribution whereas ZCAs have Weibull distribution. When the

data contains signal with additive white Gaussian noisé; de

ations from lognormal and Weibull distributions are observ

in some IMFs which can be used to detect and separate the
signal and noise components. It can also be used to deter-

mine the IMF significance level (as a measure) which is im- [8]
portant to assign the IMFs correspond to signal itself or to
noise component. Further explorations are needed for other

types of noise.
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