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ABSTRACT

In this paper, the statistical characteristics of zero-crossing
intervals and zero-crossing amplitudes (the time intervaland
the absolute value of extrema between two successive zero-
crossings) of intrinsic mode functions of white Gaussian
noise are studied. Intrinsic mode functions are extracted by
empirical mode decomposition method. Numerous simula-
tions are conducted and the probability distribution functions
of zero-crossing intervals and amplitudes are obtained. Sim-
ulation results are included. These findings are important to
determine the statistical significance of IMFs. These white
noise-only case statistical characteristics can be used for sig-
nal detection and/or signal/noise separation and an efficient
noise reduction can be achieved.

1. INTRODUCTION

Zero-crossings (ZCs) reveal rich information about the signal
characteristics with relatively low computational load [1, 2].
For example, ZC counts in a signal gives coarse but fast es-
timation of the fundamental frequency without requiring any
spectral analysis. ZCs are among the most meaningful fea-
tures in a signal. Statistics of ZCs of random functions, such
as normally distributed, band-limited noise, have been stud-
ied starting from early 40’s [3]. Due to a lack of analytical
expressions of the ZC statistics, this is still an ongoing re-
search topic in diverse fields [4, 5].

It is relatively easier and meaningful to characterize the
signal by the ZC statistics when the signal has narrow and
band-pass spectrum, which is the case in Intrinsic Mode
Functions (IMF) of white noise. IMFs are obtained by Em-
pirical Mode Decomposition (EMD) which is a data-driven
and iterative method [6]. In this study, instead of the noise
signal itself, we investigate the statistical characteristics of
zero-crossings of IMFs of white noise via simulations. The
characterization of the ZCs of IMFs can be used in various
applications such as noise reduction or signal detection in
noise. It can also be used to determine the IMF significance
level which is important to assign the IMFs corresponds to
signal itself or to noise component.

Statistics of IMF amplitudes of white noise and fractional
Gaussian noise are studied in [7] and in [8, 9]. Since EMD is
an empirical method with no compact analytical definition,
most of the studies are done by numerical simulations. The
results are important for better understanding of the EMD
procedure. These results can also be used for denoising or
detrending of noisy signals [10] by comparing the IMF ener-
gies along scales with the ones obtained from the noise-only
case.
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In this paper, instead of treating the intrinsic mode as a
whole (the mode energies), first, these modes are divided into
small intervals, namely ZC intervals, and the statistical be-
havior of these intervals is investigated. Two ZC vectors are
formed; 1) Zero Crossing Interval (ZCI) (the time difference
between two successive zero-crossings), 2) Zero Crossing
Amplitude (ZCA) (the absolute value of the extrema point
between two successive zero-crossings). Simulations are car-
ried out to characterize the statistical behaviors (the distribu-
tions and the relationship between ZCI and ZCA) of these
vectors for normally distributed white noise. Once the char-
acteristics are determined, they can be used for a noisy sig-
nal to label each ZC intervals as noise-component or signal-
component which then yield a convenient noise/signal sepa-
ration.

In Section 2, EMD algorithm is briefly explained and ZCs
are defined. Experiments and observations are given in Sec-
tion 3 and the paper is concluded in Section 4.

2. BACKGROUND

2.1 Empirical Mode Decomposition

EMD is a signal decomposition methods that extracts the in-
trinsic components from the signal without using any a priori
fixed basis as in Fourier or wavelet analysis [6]. It is an ideal
tool to analyze nonstationary and nonlinear processes. The
main procedure of EMD is called “sifting procedure”, where
the iterations isolate the fast oscillations locally in time. Af-
ter the first sifting procedure, the first IMF is obtained as a
waveform which contains the signal details at the finest time
scales (highest frequencies). This IMF is subtracted from the
original signal, and the steps are repeated on the remainder
signal in order to obtain the next IMF. The same procedure
is applied iteratively until some stopping criteria are satisfied
[11]. IMFs are narrow-band, zero-mean signals where the
number of extrema points and the number of zero-crossings
are equal or differ by 1 at most. The signalx(t) is decom-
posed intoK IMFs by EMD as:

x(t) =
K

∑
i=1

dk(t)+ r(t) (1)

Here, dk(t) is the kth IMF and r(t) is the residue signal.
Each IMF lays at lower frequency regions locally in time-
frequency domain than the previous one.

EMD acts as a dyadic filter bank for white noise [7, 9]. It
separates the white noise into intrinsic modes (IMFs) where
the mean periods are increasing by the power of 2 as the scale
decreases.
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Figure 1: 1st Column:IMFs of single realization of white noise; 2nd Column: ZCI histograms and the lognormal fits; 3rd

Column: ZCA histograms and the Weibull fits (x-axis is in terms of number of data points).

2.2 Zero-crossings

It is already shown that IMFs of white noise are normally
distributed [7, 9]. In our work, apart from the IMF amplitude
distribution, we experimentally examine the statistics ofthe
zero-crossing intervals and the zero-crossing amplitudesof
IMFs of white noise.

Let zk[i] be theith ZC instant ofkth IMF (dk(t)):

zk[i] = {ti |dk(ti) = 0}, i = 1,2, ...,Zk (2)

whereZk is the total number of ZCs atkth IMF. Then, ZC
intervalsτk[i] are expressed as:

τk[i] = zk[i +1]−zk[i] (3)

where the ZC amplitudesak[i] are expressed as below:

ak[i] = max(|dk(t)|) | t ∈ [zk[i],zk[i +1]] (4)

for i = 1,2, ...,Zk−1.
As stated in [12], the positions of multi-scale zero-

crossings may provide information of the signal characteris-
tics. However, such representation is not stable unless a mea-
sure regarding the size of the signal between successive zero
crossings are not provided. Therefore, in this paper, besides
the ZC intervals, ZC amplitudes are also taken into consider-
ation as a size measure.

3. EXPERIMENTS AND OBSERVATIONS

In order to establish the statistical characteristics of ZCIs and
ZCAs of IMFs of white noise, numerical simulations are con-
ducted. For the experiments,M = 1000 independent white
noise processes are synthesized with the length ofN = 212.
The IMFs of each realizations are obtained by EMD algo-

rithm referred asd(m)
k [n] (with m = 1, ...M; n = 1, ...N and

k = 1, ...Km). The number of IMFs,Km, in a wide band sig-
nal equals tolog2N approximately [11]. However, for the
selected data length, the algorithm yields different number
of IMFs for each realization of noise varying between 9-12.
Higher index IMFs covers very narrow band at low frequency
region and have negligible amplitudes compared to the ones
with lower indices. Therefore, only the first 9 IMFs are taken
into account for the analysis for each realization. The first9
IMFs of a single realization of white noise are plotted in the
1st column of Fig. 1. The zero-crossing points1 are deter-
mined by finding the sign-change-points in the signals, then
ZCI and ZCA signals are constructed for each IMF.

3.1 ZCI Distributions

ZCIs of each specific IMF obtained from different realiza-
tions are grouped in order to construct the main ZCI vector.
The histograms of ZCIs are obtained and then individually
normalized so that the area under the histogram bars equals
to unity. In Fig. 1, the normalized histograms of ZCIs are
plotted in the 2nd column. Several distribution functions (i.e.,
Normal, Lognormal, Rayleigh, Weibull, Gamma, Beta, Ex-
treme Value, T Location-Scale, etc.) are fit to histograms and
it is observed that lognormal distribution gives the minimum
fit error, i.e., each ZCI data (except the ones that belong to
the 1st IMF, explained in the next paragraph) approximately
fits the lognormal distribution. The fitted lognormal density
functions can be seen in the same plots as solid lines. IMFs
at lower frequency regions (higher indices) have less number
of zero crossings, so the distribution of these ZCIs are less

1Note that, since we deal with discrete time signals, the signal does not
always necessarily equals zero at a zero-crossing point. The sign of the
signal can change from minus(plus) to plus(minus) without having a value
of zero. So the zero-crossing points can be determined by using a simple
linear fit between two points where the signal changes sign.
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smooth which cause a deviation from lognormal distribution.
If the data length is long enough, the ZCI sequences of higher
indice IMFs will behave similar to lower indice IMFs.

The normalized histogram of ZCIs of the 1st IMF has 2
peaks as shown in the first plot of 2nd column in Fig. 1.
ZCIs of the 1st IMF behave different than the ones belong
to other IMFs. This difference is basically coming from dif-
ferent power spectrum behavior of the 1st IMF. It is known
that IMFs’ power spectra have band-pass shape which are
identical on semi-logarithmic scale [8], but the spectrum of
1st IMF has a high-pass shape that covers higher half of the
frequency region. Furthermore, there is non-negligible leak-
age to the lower frequency bands that causes a wide range of
ZCIs.

Mean periods of IMFs increase by power 2 as the IMF or-
der increases [8, 9]. This relationship evokes a scaling prop-
erty between ZCI density functions (pk(τ)) of IMFs:

pḱ(τ) = ρ(k−ḱ)pk(ρ(k−ḱ)τ) (5)

Here the scaling factorρ is approximately 2. In Fig. 2, nor-
malized pdf of ZCIs for 9≥ ḱ > k ≥ 2 are given where they
approximately overlap. The shape parameters of lognormal
fits are the same and the scale parameters differ byln(2).
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Figure 2: Normalized ZCI lognormal pdfs (x-axis is in terms
of number of data points).

3.2 ZCA Distributions

In this section the distribution functions of ZCAs are studied.
Determination of the statistical characteristics of maximum
(or minimum) points of some real data has critical impor-
tance such as sea surface wave heights used in coastal engi-
neering. For example in [13], the distribution of the maxima
of the sea-surface displacement is derived which approxi-
mates to Rayleigh distribution when the signal is normally
distributed and has a narrow-band spectrum. Since IMFs
obtained from white noise are also normally distributed and
narrow-band, a Rayleigh-like distribution is expected.

ZCA vectors are constructed in a similar fashion as ZCIs
defined above. The normalized histograms of ZCAs are
given in the 3rd column in Fig. 1. In these data sets, Weibull
distribution has the minimum fit. Although the fit error is
higher in the 1stIMF compared to the remaining IMFs, the
distribution still obeys the Weibull distribution.

3.3 ZCI vs ZCA

In this section, the relationship between ZCI and ZCA for
each IMF is investigated. In Fig. 3, logarithm of ZCAs are
plotted versus logarithm of ZCIs. Point groups in the same
color are the scattered distributions of each ZCI and ZCA

of a particular IMF. The mean of each group is also shown in
Fig. 3 as circles in order to observe the relationship. Through
visual inspection one can suggest that there is approximately
linear relationships along scales:

log2(ak)=̃α log2(τk)+c (6)

wherec is a constant. When a line is fitted to the data, the
slope of the fitted line is estimated as−0.48214 (which is
close to−0.5). It is stated in [7] that there is a simple linear
relation between IMF energies,Ek and average IMF period,
Tk as:

log2Ek = b− log2Tk (7)
whereb is constant. Since IMFs are sinusoid-like signals,

we can approximate the energy of each IMF as “ak
2

2 ” and the
average IMF period as “τk” whereak andτk are the means of
ZCA and ZCI respectively. These approximations in equa-
tion (7) yields:

log2(ak) =
b−1

2
−

1
2

log2(τk) (8)

Note that we obtain the relationship in equation (6) withα =
−0.5 andc = b−1

2 . The slope of the straight line becomes
−0.5 (which is already found as−0.48 by linear fit in Fig.
3).

Figure 3: ZCI versus ZCA in logarithmic scale (The mean
values of each group as black circles. The slope of the linear
fit is estimated as -0.48214).

3.4 Periodic Signal plus Noise Example

When the signal of interest consists of both noise and some
periodic components, the ZCI distributions reveal anomaly
regarding “corruption” at specific IMFs. This is shown in
a simple example where the signal is white noise corrupted
a sinusoidal signal with the angular frequencyω0 = 0.04π
where the signal-to-noise ratio is 5dB. Obtained IMFs are
plotted in the 1st column in Fig. 4. The ZCI and ZCA distri-
butions of 2nd to 5th IMFs are given in Fig. 4 in the 2nd and
the 3rd column, respectively. The lognormal and Weibull fits
for noise-only case are also shown in the figures as black
lines for comparison.

Deviations from lognormal distribution for ZCI and devi-
ations from Weibull distribution for ZCA are observed at 4th

and 5th IMFs, which means that the periodical signal com-
ponents are present in these two IMFs. Here, the periodical
signal is broken into 2 IMFs because of “mode mixing” phe-
nomenon which means that different modes of oscillations
coexist in a single IMF. Clearly, by using these histogram,
one can create a simple algorithm to determine which ZC in-
terval belongs to signal or to noise by using these histograms.
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Figure 4: 1st Column:IMFs of White Noise +cos(0.04πt); 2nd Column: ZCI histograms of 2nd to 5th IMFs (the lognormal fits
of noise-only case is also shown as black lines for comparison); 3rd Column: ZCA histograms of 2nd to 5th IMFs (the Weibull
fits of noise-only case is also shown as black lines for comparison) (x-axis is in terms of number of data points).

4. CONCLUSION

In this paper, the distribution of ZCIs and ZCAs of white
Gaussian noise IMFs are obtained by numerical analyses. It
is observed that ZCIs (except IMF#1) obey lognormal dis-
tribution whereas ZCAs have Weibull distribution. When the
data contains signal with additive white Gaussian noise, devi-
ations from lognormal and Weibull distributions are observed
in some IMFs which can be used to detect and separate the
signal and noise components. It can also be used to deter-
mine the IMF significance level (as a measure) which is im-
portant to assign the IMFs correspond to signal itself or to
noise component. Further explorations are needed for other
types of noise.
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