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ABSTRACT 

Performance analysis is essential for the ongoing develop-

ment of elite swimmers. Current methods of analysis do not 

provide the coach with an accurate system for determining a 

swimmer’s position. This research was conducted to allow 

transmission, processing and presentation of the swimmer’s 

attitude, velocity and position. A Kalman filter was inte-

grated into a wireless system to track these parameters. 

1. INTRODUCTION 

Research has been conducted previously to enable analysis of 

the swimming stroke. Maglischo produced typical velocity 

profiles of a swimmer’s hand for each individual stroke [1]. 

Seifert used such profiles to identify that an abrupt change in 

the coordination pattern of front crawl occurred at the critical 

velocity of 1.8 m/s [2]. Many studies have focused on post 

processing the data rather than monitoring performance in 

real-time and as such do not allow accurate determination of 

the position of the swimmer [include references]. 

At present the majority of methods used to analyse 

swimming technique are vision-based systems. Quintic [3] is 

an example of vision-based software where the analyst uses a 

pre-recorded video file and then manually digitizes key oc-

currences within the recording. The disadvantages of this and 

other such systems are the parallax errors induced by the use 

of video cameras, inaccurate measurements due to light re-

flection on the water surface and the large amount of time 

(and hence cost) it takes to process the data. Manual digitiza-

tion is a time consuming process and does not allow real-

time feedback to the coaches or swimmers. Wireless sensor 

devices have also been developed for use in a swimming 

environment. An example of this was presented by Davey 

[4], where a system was developed using a tri-axis acceler-

ometer to monitor stroke technique. Ohgi used a similar sys-

tem to measure wrist acceleration of swimmers [5]. Although 

both these systems used sensor devices for monitoring the 

swimmer, neither used a wireless sensor network (WSN) nor 

embedded processing to analyse the stroke technique of mul-

tiple swimmers in real-time. Both systems used a data log-

ging accelerometer to capture the data, which meant that 

information could not be viewed in real time. These systems 

rely on post processing that increases the analysis time sig-

nificantly and subsequently coaches are unable to offer im-

mediate feedback to the swimmers. In addition, neither sys-

tem offers a measurement of the swimmer’s velocity or posi-

tion in relation to the length of the pool. 

The research presented within this paper has been car-

ried out at Loughborough University, UK, and focuses on the 

development of a Kalman filter for use on an inertial naviga-

tion system (INS), which contains a tri-axis accelerometer 

and a tri-axis gyroscope, in order to characterise swimmer 

performance. The system under development has been pro-

duced to provide real-time data feedback to coaches on pool-

side and allows coaches to extract useful data with regards to 

each individual swimmer’s performance. The filter provides 

the coach with the velocity, attitude and position of the 

swimmer with respect to the length of the swimming pool. A 

WSN has previously been developed that allows real-time 

data transmission to swimming coaches and subsequently 

their swimmers in a training environment. It was developed 

to operate as a network of nodes to allow analysis of multiple 

swimmers performance during a training session.  

2. INERTIAL NAVIGATION SYSTEMS 

Inertial navigation uses sensors to sense rotational and trans-

lational motion with respect to an inertial frame [6]. An INS 

usually contains three axes of acceleration and three axes of 

angular rotation. The purpose of an INS is to determine the 

angular motion of an object using gyroscopic sensors, from 

which its attitude relative to a reference frame may be de-

rived and to measure specific force using accelerometers. 

The specific force measurements are resolved into the refer-

ence frame using the knowledge of attitude derived from the 

information provided by the gyroscopes. The force resulting 

from the gravitational field is evaluated and the specific force 

measurements are integrated to obtain estimates of the veloc-

ity and position of the object being tracked. The inertial 

measurements are recorded in the body frame (b-frame). The 

b-frame is the orthogonal axis set, which is aligned with the 

roll, pitch and yaw axes of the object in which the navigation 

system is installed, i.e. the orientation of the swimmer (see 

Figure 1).  The b-frame is converted into the inertial frame (i-

frame) in this application. The i-frame has its origin at the 

centre of the Earth and has axes that are non-rotating with 

respect to the fixed stars, defined by the axes Oxi, Oyi, Ozi. 

The axis Ozi is coincident with the Earth’s polar axis (which 

is assumed to be invariant in direction, see Figure 2) [6]. 
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Figure 1: Body reference frame for the wireless sensor 

 

Figure 2: Frames of reference 

 

In the application presented within this paper the INS 

was applied to a strapdown system. In strapdown systems the 

inertial sensors are mounted rigidly onto the device, which  

in this application is the swimmer’s body. Accelerometers 

measure the sum of the acceleration with respect to inertial 

space and the acceleration due to gravitational acceleration. 

Hence, the measurement provided by the accelerometers 

must be combined with knowledge of the gravitational field 

to determine the acceleration of the object with respect to 

inertial space [6]. The main errors inherent within a micro-

electrical-mechanical-system (MEMS) accelerometer are 

fixed bias, scale-factor and cross-coupling errors [7]. Fixed 

bias refers to the offset of the accelerometer signal from the 

true value when the applied acceleration is zero. It is possible 

to estimate the fixed bias by measuring the long term average 

of the accelerometer’s output when it is not undergoing any 

acceleration. It is necessary to know the precise orientation of 

the device with respect to the gravitational field in order to 

measure the bias. In practice this can be achieved by calibra-

tion routines in which the device is mounted on a turntable, 

whose orientation can be controlled extremely accurately [7]. 

The scale-factor errors are inaccuracies in the ratio of a 

change in the output signal to a change in the input accelera-

tion that is to be measured, and the cross-coupling errors are 

erroneous accelerometer outputs resulting from accelerome-

ter sensitivity to accelerations applied normal to the input 

axis. They are commonly expressed as a ratio of output error 

to input rate, in parts per million (ppm) [6]. 

Rate gyroscopes are used to sense the rate of turn by a 

vehicle or structure about some predefined axis (see figure 

1). MEMS gyroscopes experience fixed bias, acceleration-

dependent bias and scale-factor errors. The fixed bias is the 

average output from the gyroscope when it is not undergoing 

any rotation, i.e. the offset of the output from the true value. 

Acceleration-dependent bias is proportional to the magnitude 

of applied acceleration. 

Edwards [8] demonstrated that seemingly small aliased 

content could cause appreciable errors in the integrated 

waveforms. He stated that all experimentally collected wave-

forms of finite duration, and that have been discretised by an 

analog to digital convertor, will contain aliased content to 

some degree. Thong [9] supported this work and suggested 

that the errors in integration depended not only on the noise 

level but also on the system sampling frequency and effects 

such as drift due to temperature fluctuations. A common 

method to minimise the errors associated with the acceler-

ometer and gyroscope signal is the use of filtering (see for 

example, Koukoulas, [10], Hernandez, [11] and Jo, [12]). 

Filtering reduces the errors associated with integration of a 

signal, in this case integration of the acceleration in order to 

obtain velocity and double integration to obtain position. 

A recursive least squares adaptive noise cancelling 

method was applied by Hernandez [8] to estimate electrical 

signals coming from an accelerometer embedded in a bus. 

The results allowed estimation of acceleration and velocity 

by using a computer controller system, without the necessity 

of buying expensive precision electronic instruments for di-

rect hardware implementation. The recursive least squares 

algorithm also has the advantage of computational simplicity. 

However the least squares algorithm assumes that the criteria 

is one of fitting data, and not minimizing the estimation error 

[10]. The Kalman filter brings into consideration the prob-

lems associated with the least squares method. It minimises 

the estimation error and uses information regarding a priori 

knowledge of parameters.  

The instantaneous “state” of a linear dynamic system 

perturbed by white noise is estimated using a Kalman filter 

using a state space representation [13]. White noise is a sta-

tionary random process having a constant spectral density 

function [14]. An advantage of the Kalman filter is that it is 

recursive and hence estimates are updated upon receipt of 

each measurement. This means that there is no need to save 

past data. It can also be easily configured to handle extrane-

ous data points and model changes. The Kalman filter can be 

used for predictive design of sensors systems and to optimize 

the use of sensor outputs [15]. An overview of the Kalman 

filtering process can be seen in Figure 3. 

 

 

Figure 3: Overview of Kalman filtering process 
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For the sake of the reader’s convenience, the discrete 

linear Kalman filter equations are summarised below: 

 

System model: 

 �� � �������� � ����, wk~N(0,Qk) 

Measurement model:  


� � ���� � ��, vk~N(0,Rk) 

State estimate extrapolation: 

�
���� � �����
������ 
Error covariance extrapolation: 

����� � ���������������� � ���� 

State estimate update: 

�
���� � �
���� � ������ � ���
����� 
Error covariance update: 

����� � �� � ����������� 

Kalman gain matrix:  

��� � ������������������� � ����� 

 

Where: 

�� = (n x 1) process state vector at time tk �� = (n x n) state transition matrix relating �� to ���� 

�� = (n x 1) vector – assumed to be a white sequence with 

known covariance structure 


� = (m x 1) vector measurement at time tk �� = (m x n) matrix giving the ideal (noiseless) connection 

between the measurement and the state vector at time tk �� = (m x 1) measurement error – assumed to be a white 

sequence with known covariance structure and having zero 

crosscorrelation with the �� sequence 
��� = a priori estimate 

��� = a posterior estimate 

 

Kim [16] and Vaganay [17] both used an extended Kal-

man filter to combine measurements from accelerometers 

and gyroscopes in order to produce an estimate of position. 

Kim developed a real-time orientation estimation algorithm 

based on measurements from three MEMS accelerometers 

and three MEMS rate gyroscopes. The approach was based 

on relationships between the quaternion representing the plat-

form orientation, the measurement of gravity from the accel-

erometers, and the angular rate measurement from the gyro-

scopes. The performance of the Kalman filter was evaluated 

in terms of the roll, pitch and yaw angles. An optical position 

tracking device measured the position of three LEDs attached 

to the IMU, providing verification for the orientation tracker. 

Vaganay [17] developed an attitude estimation system based 

on inertial measurements for a mobile robot. He used two 

accelerometers and three gyroscopes and implemented an 

extended Kalman filter to combine the measurements from 

both. 

3. KALMAN FILTER APPLICATION 

3.1 Tracking orientation 
The overview of the navigation equations that are to be 

used to track the orientation and position of the swimmer 

can be seen in Figure 4. 

 

 

Figure 4: Overview of navigation equations used 

The orientation, or attitude, of an INS relative to the 

global frame of reference is tracked by ‘integrating’ the angu-

lar velocity signal ωb(t) = (ωbx(t), ωby(t), ωbz(t))
T
 obtained 

from the system’s rate-gyroscopes. In order to specify the 

orientation of an INS a direction cosine attitude representa-

tion is used. In the direction cosine representation the attitude 

of the body frame relative to the global frame is specified by 

a 3 x 3 rotation matrix C, in which each column in a unit 

vector along one of the body axes specified in terms of the 

global axes [6]. 

Initially the difference between the previous and present 

raw gyroscope output in the x, y and z axes are determined: 

δωbx(t) = ωbx(t) – ωbx(t-1) 

δωby(t) = ωby(t) – ωby(t-1)  

δωbz(t) = ωbz(t) – ωbz(t-1) 

 

where ψ = ωbx,Ф =  ωby and θ = ωbz and wbx, wby, and wbz are 

the raw gyroscope outputs in the x, y and z axes at time t  

respectively. To track the attitude of the INS C is tracked 

through time. The attitude at time t is given by C(t) and the 

rate of change of C at t by 

 

�� � lim#$%���& � '&� � ��&��/'&% 

 

C(t+δt) can be written as the product of two matrices: 

 

A(t) = I + δψ 
 

where A(t) is a direction cosine matrix which relates the b-

frame at time t to the b-frame at time t+δt [6] and: 

 

δψ =  

 
The angular velocity signals obtained from the gyro-

scopes were integrated by the INS attitude algorithm, propa-

gating errors in the gyroscope signal through to the calcu-

lated orientation. White noise and uncorrelated bias errors are 
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the main causes of an error in the orientation. White noise 

causes an angle random walk whose standard deviation 

grows proportionally to the square root of time. An uncorre-

lated bias causes an error in orientation which grows linearly 

with time [6]. These errors are accounted for using the Kal-

man filter. 

 

3.2 Tracking position 
To track the position of the INS the acceleration signal 

ab(t) = (abx(t), aby(t), abz(t))
T
 obtained from the accelerometers 

was projected into the global frame of reference: 

 

ag(t)=C(t)ab(t) 

 

Acceleration due to gravity was subtracted and the remaining 

acceleration integrated once to obtain velocity, and again to 

obtain displacement: 

)*�&� �  )*�0� � , -*�&� � *.&
/

%
 

0*�&� �  0*�0� � , )*�&�.&
/

%
 

where vg is the velocity of the swimmer, sg is the displace-

ment of the swimmer and g is the acceleration due to gravity 

in the global frame. In this system 1g must be subtracted 

from the (globally) vertical acceleration signal to remove 

acceleration due to gravity before the signal is integrated. A 

tilt error ε causes a component of the acceleration due to 

gravity with magnitude g.sin(ε) to be projected onto the hori-

zontal axes. 

 

3.3 Implementation of a Kalman filter 

The overview of the system which is to be used to calcu-

late the required variables (velocity, position, pitch and roll of 

the swimmer) can be seen in Figure 5. 

 

 

Figure 5: Overview of system for navigation of a swimmer 

The swimmer application required 14 states within the 

Kalman filter: x1 = east position, x2 = east velocity, x3 = north 

position, x4 = north velocity, x5 = pitch, x6 = roll, x7 = gyro 

bias east, x8 = gyro bias north, x9 = gyro scale factor east, x10 

= gyro scale factor north, x11 = accelerometer bias east, x12 = 

accelerometer bias north, x13 = accelerometer scale factor 

east, x14 = accelerometer scale factor north. These states have 

been used to create the state transition matrix (Φ) for the 

filter. Secondly an initial estimate of the process noise co-

variance has been calculated, where Q(k) is the covariance of 

the white noise w(k). The sensor noise covariance, R(k) was 

also calculated. This covariance has been determined using 

the power spectral density (PSD) values obtained from the 

vendors with regards to each sensor. The measurement sensi-

tivity matrix (H) was determined, defining the linear rela-

tionship between the state of the dynamic system and meas-

urements to be made. It was constructed as a 6 x 6 matrix, in 

order to allow determination of the parameters x1, x2, x3, x4, x5 

and x6. An initial estimate for P(k)(+) was created. This ini-

tial estimate was large so that 12�3���� could be approxi-

mated to zero. 

4. USE CASE FOR A SWIMMER ANALYSIS TOOL 

An overview of the Kalman filter implementation for the 

swimmer application can be seen in Figure 6. Initially a trig-

ger was implemented onto the WSN which synchronized the 

high speed video and WSN and initiated the Kalman filter 

when the buzzer was pressed to instigate the dive. The func-

tion was implemented in the embedded programming on the 

wireless node which sent an interrupt via a TTL signal to the 

access point (AP) when the trigger was enabled. The embed-

ded code initialised the trigger, starting the recording on the 

rising edge of the signal. The INS and Kalman filter were 

used to track the position and attitude of the swimmer as they 

travelled along one length of the pool. The turn of the swim-

mer was identified as the largest peak on real-time filtered 

data (see Figure 7), using an equation to determine the 

maxima and minima points. The swimmers turn was used to 

identify a distance of 50m had been reached, in the x-axis, 

and to update the Kalman filter parameters for the next 

length.  

 

Figure 6: Implementation of the Kalman filter 

A low pass Butterworth filter embedded onto the node 

was used to ascertain the time at which the swimmer’s feet 

touched the wall. Setting a filter frequency of 0.6Hz was 

sufficient to achieve this. Real-time embedded filtered data 

on 100m of front crawl stroke with 3 turns can be seen in 

Figure 7. The largest peaks in the data have been identified as 

the swimmer’s turn at the wall. 
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Figure 7: Butterworth filter on 4 lengths of front crawl data

Using the Butterworth filter to determine the exact time 

when the swimmer finished each length 

update the Kalman filter. The time at which the swimmer’s 

feet hit the wall was identified and correlate

of 50m in the x axis in the inertial frame. 

At present video data has only been collecte

ment sensor information gathered during a swimmer’s dive. 

The raw and corrected velocities obtained from the sensor 

readings were compared with video data. 

locity refers to the data in the inertial frame, with the impl

mentation of a Kalman filter. From Figure 8 it can be seen 

that as the length of time increased the corrected velocities 

tended closer to the velocities obtained using the high speed 

video camera. 

 

 

5. CONCLUSION 

The system developed within this paper provides a 

methodology that provides coaches with information 

gard to a swimmer’s position with respect to the length of the 

 

 

: Butterworth filter on 4 lengths of front crawl data 

to determine the exact time 

immer finished each length it was possible to 

update the Kalman filter. The time at which the swimmer’s 

correlated with a position 

At present video data has only been collected to supple-

ment sensor information gathered during a swimmer’s dive. 

obtained from the sensor 

 The corrected ve-

locity refers to the data in the inertial frame, with the imple-

From Figure 8 it can be seen 

that as the length of time increased the corrected velocities 

tended closer to the velocities obtained using the high speed 

 

 

The system developed within this paper provides a 

coaches with information in re-

gard to a swimmer’s position with respect to the length of the 

pool. It provides a means for determining the attitude and 

velocity of the swimmer at each time 

future work involves validation tests to determine the acc

racy of the algorithms.  
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