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ABSTRACT

In this paper, we present a system to detect and track crowds
in an image sequence captured by a camera. In the first step,
we compute optical flows by means of pyramidal Lucas-
Kanade feature tracking. Afterwards, a density based clus-
tering is used to group similar vectors. In the last step, a
crowd tracker is applied to each frame, allowing us to detect
and track the crowds. The output of the system is given as
a graphic overlay, i.e. arrows and circles with different col-
ors are added to the original images to visualize crowds and
their movements. Evaluation results show that the system
is capable of detecting certain events in the crowds, such as
merging, splitting and collision.

1. INTRODUCTION

Security systems are getting more and more important nowa-
days. With the growth of threats, companies tend to invest
more capital in surveillance and security companies. These
security companies have a tendency to develop more digital
surveillance applications and deploy less human resources,
especially with the global economic crisis. Moreover, not
only surveillance is important, but also systems capable of
recognizing how people act in public scenarios and analyz-
ing the information coming from it. For instance, if there is a
moment when the speed of crowd momentarily goes to zero,
maybe there are some event happening in that space. The
capability of detecting where the group of people is mov-
ing is useful for urban design. For instance, the area where
many people are passing frequently should not be designed
as an enclosed space. For those reasons, crowd analysis has
received more and more attention from technical and social
research disciplines.

In this paper, we propose a system that detects multiple
crowds and their movements. The system detects crowds
with different shapes and motions and tracks them over time.
Moreover, it has the function to compute statistics from the
collected tracking information. The paper is organized as
follows. In Section 2 relevant work is discussed. In Sec-
tion 3 we introduce our system, which consists of the follow-
ing blocks: Optical Flow Computation, Block Partitioning,
Density Based Clustering and Crowd Tracking. We make an
evaluation of our system in Section 4 and finally we conclude
and discuss possible future work in Section 5.

2. RELATED WORKS

One of the most intuitive techniques for detecting object is
background subtraction. It detects the foreground objects
as the difference between the current frame and an image

of the scene’s static background. Several algorithms us-
ing this technique are presented in [1] and [2]. Neverthe-
less, this technique is sensitive to illumination and motion
changes. For instance, camera oscillations or high-frequency
background objects may disturb the results of this technique.
Other methods combine statistics with knowledge on the
moving object [3]. Using real-time segmentation of mov-
ing regions, an improvement is presented in [4]. According
to the solutions proposed, background subtraction gets accu-
rate, but they are highly computational demanding.

Block matching technique [5] divides images into small
blocks. For each reference block, a search is made over all
shifted versions of that block within a rectangular region in
the next frame, known as the search window. The candidate
block with the minimum distortion from the reference block
gives the estimated motion of the reference block. Many cri-
teria exist for the distortion measurement between reference
and candidate blocks. In [6] the mean absolute error is used,
which offers a good trade-off between complexity and effi-
ciency.

Optical flow methods, that use differential techniques,
are based on the hypothesis that brightness of a particu-
lar moving point is constant over time. In order to calcu-
late optical flows a lot of algorithms are proposed such as
Horn and Schunck’s Method [7] and Lucas and Kanade’s
Method [8]. These methods suffer from problems of ac-
curacy and illumination changes. In order to solve these
problems some improvements are presented. Among them,
the most important one is the pyramidal implementation of
Lucas-Kanade’s Method [9], that allows to detect motions
with different speeds.

Andrade [10] characterizes crowd behaviour by observ-
ing the optical flow associated with the crowd and uses un-
supervised feature extraction to encode normal crowd be-
haviour. Other techniques have been recently presented. A
relevant one [11] is the introduction of self-organizing maps
for the visualization of crowd dynamics and to learn mod-
els of the dominant motions of crowds in complex scenes.
An useful and interesting technique is the detection of major
flows and events in crowd scenes, using a Direction Model
constructed from Von Mises distributions applied to the ori-
entation of the optical flow vectors [12].

3. A CROWD ANALYSIS SYSTEM

In order to find out which part of the input frames are moving,
we use the KLT feature tracker [13] where motion detection
is computed by using the pyramidal Lucas-Kanade optical
flow method, based on the Shi and Tomasi Corner Detection
Algorithm [14]. The pyramidal implementation allows us to
obtain more robustness against big movements. Besides, the
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method is fast enough to allow us to obtain real-time results.
An important remark is the fact that we are going to deal

with crowds that can assume different shapes. For that, a
density based clustering is well suited to group the differ-
ent motion vectors into clusters. An interesting solution is
the DBSCAN algorithm [15], that has the capability to work
without knowing how many clusters it has to discover and at
the same time it can find clusters with different shapes.

Figure 1 shows the basic computation flow of our system.
The system takes raw sequential frames as input and gives
crowd detection in a graphic overlay as output.

Figure 1: Data flow

3.1 Optical Flow Computation

This step takes two subsequent frames as input Fk and Fk+1:
first Fk is used to detect strong corners (this allows us to re-
duce the dimensionality, since we leave out pixels that are not
strong corners), and then we exploit Fk+1 to compute optical
flow of these corners. The optical flow estimation returns a
matrix Ak : 

V11 · · · V1 j · · · V1Q
· · · · · · · · · · · · · · ·
Vi1 · · · Vi j · · · ViQ
· · · · · · · · · · · · · · ·
VP1 · · · VP j · · · VPQ


where P and Q are the horizontal and the vertical dimension
of the input frames, respectively, and Vi j = (Xi j,Yi j,Mi j,αi j)
is the motion vector related to the i j pixel. For each Vi j:

• Xi j and Yi j are the X and Y coordinate at frame Fk+1 of
pixel i j of frame Fk;

• Mi j is the magnitude of the vector computed as the Eu-
clidean distance between point (i, j) and point (Xi j,Yi j)

• αi j is the motion direction of pixel i j
Since we compute motion of strong corners only, many Vi j
vectors will be null vectors. In other hand, Mi j and αi j could
have been not included in Vi j, but since they are used sev-
eral times during the crowd tracking stage, we have decided
to use them in order to improve the efficiency of the crowd
tracker.

3.2 Block Partitioning
In order to reduce dimensions (P× Q matrix is too big)
and noise (optical flow can be noisy if we consider single
vectors), we compute a matrix Ãk by applying a window
W ×W , such that Ãk is:

Ṽ11 · · · Ṽ1 j · · · Ṽ1Q̃
· · · · · · · · · · · · · · ·
Ṽi1 · · · Ṽi j · · · ṼiQ̃
· · · · · · · · · · · · · · ·
ṼP̃1 · · · ṼP̃ j · · · ṼP̃Q̃


where:

• P̃ = P/W
• Q̃ = Q/W
• Ṽi j is the vector sum of all vectors in a window, centered

at pixel i j
In order to reduce the error made in crowd detection with

respect to the benchmark data (see section 4), we choose em-
pirically W = 11. We obtain a faster cluster computation (see
section 3.3) by raising the value of W but we loose infor-
mation about motion vectors. Similarly, we reduce the ap-
proximation but we need more time to find out clusters by
lowering W , because the resulting Ãk will be too big.

3.3 Density Based Clustering
Each vector belonging to the Ãk matrix represents the motion
vector of a certain block of the image plane. These vectors
need to be grouped in order to form a crowd, i.e. by applying
clustering techniques [16]. A special attention has to be paid
to the definition of a cluster in our case. Generally speaking
a cluster is a collection of objects/data that have:

• High internal similarity: objects in a given cluster are
very similar between themselves;

• Low external similarity: given two objects taken from
two different clusters, they have low similarity between
themselves.
The neighbourhood function is defined as follows: given

two vectors Z1 and Z2 they are said to be neighbours if the
following conditions are all jointly met:

• Their initial points are no more distant than ε , empirically
set to 10.

• Their directions are similar.
• Their magnitudes are similar.

The similarity introduced above means that we are going
to define some acceptance thresholds for direction and mag-
nitude:

• two vectors V1 and V2 have similar directions if the abso-
lute value of the difference between their angles, α1 and
α2 is not greater than 25 degrees.

• two vectors V1 and V2 have similar magnitude if the ab-
solute value of the difference between their magnitudes
is not greater than 10.

Moreover, this definition of similarity allows us to recognize
splitting and merging crowds and to deal with collapses. The
above defined thresholds are strictly related to the mutual po-
sition of the camera and to the crowds to be chased. A closer
camera will be more sensitive to small movements and to
noise as well, so it would be more suitable to raise these
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thresholds. A farther camera will not notice small differ-
ences between vectors, so we will have to reduce acceptance
thresholds.

3.4 Crowd Tracking
In our implementation, each crowd has an ID. During the
crowd detection process it could happen that the same crowd
is given two different IDs across different frames. This is
due to the fact that the crowds moving on the image plane
are merging and splitting, and it is often difficult to recognize
the same crowd after several frames. Besides, our model is
stateless, i.e. it cannot accomplish this ID fixing task. We
solve this problem by:

• Recognizing the same crowd across the whole frame se-
quence and assign it an unique ID, and

• Removing the crowds that are probably results of optical
flow errors or noise.
In order to realize the first step, we use a similarity func-

tion. The idea is to label two crowds with the same ID if they
are very similar. The formalization of the similarity function
is very important. This is a convex combination between:
distance between points of application, i.e. distance between
center of mass (B); difference between directions (D); and
difference between areas (A). Let us remember that direction
of a cluster means the average of all pixel’s direction in that
cluster. Thus, given two crowds, C1 and C2, the similarity
function S(C1, C2) will be:

S(C1,C2) = α1 B+ α2 D+ α3 A (1)

where
3

∑
i=1

αi = 1 (2)

by definition of convex combination and with the result nor-
malized to a range of [0,1]. The αi parameters have been set
as follows:

• α1 = 0.7; α2 = 0.2; and α3 = 0.1
In order to recognize and assign an unique ID for any

crowd in different frames, we need to store a buffer with L
crowds recognized in the L previous frames. In fact if we
have worked only based on the last frame, we could not rec-
ognize crowds that disappear for a frame or two because of
noise or occlusion.

Since we have defined a similarity function between
two crowds, we can recognize crowds across several
frames. Given two frames F1 and F2 let us define Φ1 =
(C1,C2, ...,Ci, ...,Cn) and Φ2 = (K1,K2, ...,K j, ...,Km) the
sets of crowds that are contained in F1 and F2, i.e. all the
crowds detected by means of the above described method.
For each crowd Ci, belonging to Φ1 we want to find in Φ2
one and only one K j that best matches, i.e. the crowd K j that
is more similar to Ci than all the others contained in Φ2.
We define a function M(Ci) which returns the crowd K j that
best matches with Ci; in other words we want the crowd K j,
taken from Φ2, that is most similar to Ci.
M(Ci) is defined as follows:

M(Ci) = argmaxK j(S(Ci,K j)) (3)

and it is computed for each Ci ∈Φ1.
To prevent errors in detecting crowds across different frames,
we take into account only those values of S(Ci,K j) that are

greater or equal to a given threshold T . This way, Ci is not
matched if there is no K j such that the similarity between
them is at least T . Empirically T has been set to 0.7. More-
over we want to assign to each Ci one and only one K j: thus,
if there are two crowds Ca and Cb, and a crowd Kz such that
M(Ca) = M(Cb) = z, Kz will be matched to the crowd that is
more similar to it. After we have found all the best matching
couples (Ci,K j), we say that:

• if there are any Ci that are not yet matched, they have
disappeared across time, or have merged.

• similarly, if there are any K j that are not yet matched,
they are recognized to be new crowds that have entered
the scene, or have split from an existing one.

Lastly we need to remove crowds originating from noise. In
order to distinguish between a real crowd and a false one
simply observe how long it lasts in the frame sequence: a
false crowd is supposed to last a short time and thus to be
avoided. Since there can be situations where a big crowd is
seen as two crowds that move close to each other for a few
frames, we do not want to detect a splitting event. Thus, if
a crowd lasts for less than 4 frames, it is not considered as a
crowd and hence it is removed.

4. EVALUATION

The application has been tested against PETS2009 bench-
mark data [17]. We focused on three kind of challenges:

• Crowd merging event: two or more groups become close
enough to be considered a single group from that point
on;

• Crowd splitting event: persons belonging to a single
crowd start walking apart so that they cannot be consid-
ered a single group anymore;

• Crowd collision event: two or more crowds walking in
two different directions merge for some frames and then
split up again.

The first two types of events are detected by analyzing the
crowds’ orientations and distances; on the other hand, for the
third category, we have used a tracker module to recognize
crowds again after merging and splitting. Then we collect
the following information focusing on three variables:

• Delay, i.e. the error in detecting an event (splitting or
merging), expressed in terms of delay between the frame
where the event happens and the one in which our system
recognizes it;

• True positive rate (TPR), the ratio between the number of
events recognized and the number of events that actually
happens in the scene;

• False negative (FN), i.e. the number of false events de-
tected by our system.
In the following different scenarios will be presented.

Each scenario is structured as follows:
• Challenge type: Merging, splitting, crowd chasing after

collision;
• Description: Short description of the test case;
• Sequence: Source sequence name (from PETS2009

benchmark data) and its length in frames.

4.1 Scenario 1
Challenge type: Crowd merging [18].
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Description: This sequence contains a densely grouped
crowd and a single person joining it.
Sequence: (Pets 2009) S1.L2.14-06.View1 - 201 frames.

Figure 2: The single person is still detached from the crowd.
Each arrow represents the movement of a cluster.

Figure 3: The single person has just merged with the crowd

In this scenario (Figs. 2 and 3), we have the follow-
ing results: capable of tracking correctly a crowd merging
(TPR=1.0), without any delays (Delay=0). Moreover, no
false events are detected (FN=0.0).

4.2 Scenario 2
Challenge type: Crowd splitting [18].
Description: A single crowd is moving diagonally. At a
point it splits up into 3 different crowds.
Sequence: (Pets 2009) S1.L2.14-31.View1 - 131 frames

In Fig. 4 the first splitting is shown: the left marked part
of the crowd is the portion that is currently splitting. In Fig.
5, the second splitting is shown.

Figure 4: First splitting detection for scenario 2

Figure 5: Second splitting detection for scenario 2

In the first splitting, the crowd that is departing from the
bigger one is partially overlapped on the bigger one. This

happens because we are mapping a 3D space into 2D, caus-
ing some delay in the first event. In this scenario, the whole
image plan is covered by shadow, i.e it has a low spatial color
gradient, causing delays in the detection of both splitting.
Nevertheless, we have obtained the following results for this
scenario: a good capacity of tracking a crowd splitting (TPR
= 1.0) with some delay (Delay = 4) due to the overlapping
effect introduced above. No false events were detected (FN
= 0.0).

4.3 Scenario 3
Challenge type: Occlusion.
Description: There are two crodws moving against each
other. At a point they collide and become a single crowd
for a number of frames and in the end they split again.
Sequence: S1.L1.13-57.View1 - 221 frames

In this scenario occlusion happens during 8 frames. Our
system is able to chase a crowd even if it is not visible for
a certain time. Figs. 6 and 7 depict the behaviour of the
tracker: the person marked in yellow circle (left circle with
an arrow) gets occluded and then the person is recognized
again after she comes out of the bigger crowd.

Figure 6: The single person is occluded with the crowd

Figure 7: the single person is recognized again after occlu-
sion

4.4 Scenario 4
Challenge type: Arbitraty objects.
Description: There is a car passing by in the front of the
camera and it is recognized as a crowd.
Sequence: S1.L1.13-59.View3 - 20 frames

In this scenario we show one of the drawbacks of our sys-
tem. Since we are not using shape or pattern recognition, the
system can classify points belonging to any object as crowds.
In the Fig. 8 we can see the car passing by being recognized
as a crowd.

4.5 Results
In this section the benchmark results are going to be shown.
Mean (µ) and standard deviation(σ ) of three variables (De-
lay, TPR and FN) are shown in table 1. Since µ(T PR) and
µ(FN) take values 1.0 and 0.0, respectively, their standard
deviations are equal to 0. This means that in the above pre-
sented scenarios, our system does not detect an event if it
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Figure 8: The car is recognized as a crowd.

µ(Delay) σ(Delay) µ(T PR) µ(FN)
2.66 2.05 1.0 0.0

Table 1: Average results of the system

does not happen and it detects all the events that happen.
Regarding the Delay we observe that, even though there is
some delay in event recognition, it does not affect the overall
performances.

5. CONCLUSIONS AND FUTURE WORK

There are several methods to detect and/or track crowds. The
usual approaches use excessively computational power and
generally focus on a single person or people concentrated
in the same space. In many environments, these approaches
fail. In this paper, we described an accurate and fast system
(20 frames per second) that can effectively detect and track
crowds with various shapes. The system has been tested in
i386 platform with Windows XP and Vista. It starts with the
computation of optical flows, comparing every frame with its
previous one, using pyramidal implementation of the Lucas-
Kanade method. After applying a block partitioning to each
output frame, we cluster the different motion vectors by their
similarity, using a DBSCAN algorithm. Finally, to cope with
the problem of temporary occlusion, we have introduced a
solution: the crowd tracker. Experimental results show that
our system is capable of giving an accurate output in real
time for different situations and environments. Nevertheless,
the distance between motion points is not always accurate,
since we lose one dimension when we deal with sequence
of images (2D) as input. It can be achieved better results in
our system if we provide the 3D coordinates of the motion
points.
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