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ABSTRACT 
The discrete quaternion Fourier transform (DQFT) is useful for 
signal analysis and image processing. In this paper, we derive the 
eigenfunctions and eigenvalues of the DQFT. We also extend our 
works to the reduced biquaternion case, i.e., the discrete reduced 
biquaternion Fourier transform (DRBQFT). We find that an even 
or odd symmetric eigenvector of the 2-D DFT will also be an ei-
genvector of the DQFT and the DRBQFT. Moreover, both the 
DQFT and the DRBQFT have 8 eigenspaces, which correspond to 
the eigenvalues of 1, -1, i, -i, j, -j, k, and –k. We also use the de-
rived eigenvectors to fractionalize the DQFT and the DRBQFT 
and define the discrete fractional quaternion transform and the 
discrete fractional reduced biquaternion Fourier transform.       

1.     INTRODUCTION  
The quaternion algebra is a generalization of the complex algebra 
[1]. A number in the quaternion field has three imaginary parts and 
can be expressed as:  
                   kqjqiqqq kjir ⋅+⋅+⋅+= , (1) 

where i, j, and k satisfy the following rules:   
       1222 −=== kji ,  i j k⋅ = ,  j k i⋅ = ,   k i j⋅ = ,   

      j i k⋅ = − ,    k j i⋅ = − ,    i k j⋅ = − .            (2) 
Based on the quaternion algebra, the discrete quaternion Fourier 
transform (DQFT) [2] is defined as 

      ( ),DQFT x m n⎡ ⎤⎣ ⎦           

  ( ) ( )1 1

0 0

2 21 exp , exp
M N

m n

i pm x m n j qnMN M N
π π− −

= =

= − −⎡ ⎤⎣ ⎦∑∑ .  (3) 

The DQFT is useful for color image analysis, spectral analysis, 
and filter design [2][3][4].   

There is another algebra that also has four elements, i.e., the 
reduced biquaternion algebra [5][6]. A number in the reduced 
biquaternion field can be expressed as:  
             kqjqiqqq kjir ⋅+⋅+⋅+= ,       (4) 

where 2 2 1i k= = − ,    2 1j = ,    i j j i k= = ,               

           i k k i j= = − ,    j k k j i= = .     (5) 
There are two differences between the reduced biquaternion and 
the quaternion algebras. First, in the reduced biquaternion algebra, 
j2 = 1. However, in the quaternion algebra, j2 = −1. Moreover, the 
reduced biquaternion algebra is always commutative (i.e., xy = yx 
is always satisfied), but in the quaternion algebra, ij = −ji, ik = −ki, 
and jk = −kj. The discrete reduced biquaternion Fourier transform 
(DRBQFT) [6] can also be defined as the following form 

         ( ),DRBQFT x m n⎡ ⎤⎣ ⎦  

    ( ) ( )1 1

0 0

2 21 exp exp ,
M N

m n
i pm k qn x m nMN M N
π π− −

= =

= − − ⎡ ⎤⎣ ⎦∑∑ . (6)    

As the DQFT, the DRBQFT is also useful for color image analysis 
and filter design [5][6]. The DRBQFT is easier to implement and 
suitable for multiple channel signal analysis.   

In this paper, we derive the eigenvectors and eigenvalues of 
the DQFT and the DRBQFT. We find that if ef[m, n] is an eigen-
vector of the 2-D DFT in the complex filed and ef[m, n] = ±ef[m, 
−n] or ef[m, n] = ±ef[−m, n], then it is also an eigenvector of the 
DQFT and the DRBQFT. Moreover, the original DFT has 4 dis-
tinct eigenvalues (±1 and ±i), but both the DQFT and the 
DRBQFT have 8 distinct eigenvalues (±1, ±i, ±j, and ±k). See 
Sections 2 and 3.  

Moreover, in Section 4, we use the derived eigenvectors and 
eigenvalues of the DQFT and the DRBQFT to define the discrete 
fractional quaternion transform (DFRQFT) and the discrete frac-
tional reduced biquaternion Fourier transform (DFRRBQFT). 
They are analogous to the discrete fractional Fourier transform 
[10][11] in the complex field and generalize the DQFT and the 
DRBQFT.   

Furthermore, our results can be easily extended to the con-
tinuous case, i.e., deriving the eigenfunctions and eigenvalues of 
the continuous quaternion and reduced biquaternion Fourier trans-
forms. See Section 5 
  
2.    EIGENVECTORS AND EIGENFUNCTIONS OF DISCRETE 

QUATERNION FOURIER TRANSFORMS  
Since the quaternion algebra does not have the commutative rule, 
there are two different ways to define the eigenvectors and eigen-
values of the DQFT:           

   (right-sided form)    ( ), ,DQFT e m n e m n λ=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , (7)   

   (left-sided form)      ( ), ,DQFT e m n e m nλ=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .     (8) 

We first discuss the right sided form eigenvectors and eigen-
values of the DQFT. We find that they can be derived from those 
of the original 2-D discrete Fourier transform (2-D DFT) in the 
complex field.  

[Theorem 1] Suppose that ef[m, n] is an eigenvector of the 2-D 
DFT:  

                     ( ), ,f fDFT e m n e m n λ=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,        (9) 

  where ( ) 2 21 1

0 0

1, ,M N

M N
i pm i qn

m n
DFT x p q e x m nMN

π π
− −

− −

= =

=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑ . (10)      
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If ef[m, n] is even along n, i.e.,  
                           ef[m, n] = ef[m, N−n],              (11) 
then is also the eigenvector of the DQFT and the corresponding 
eigenvalue is also λ. 

                    ( ), ,f fDQFT e m n e m n λ=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .   (12) 

(Proof): Since ef[m, n] is even along n,      

                        ( )1

0

2, sin 0
N

f
n

e m n qnN
π−

=

=⎡ ⎤⎣ ⎦∑ ,       (13) 

the DQFT of ef[m, n] is 

  

( )

( )
( )
( ) ( )( )

2

2

2

1 1

0 0

1 1

0 0

1 1

0 0

,

2 21 , cos( ) sin( )

21 , cos

2 21 , cos sin

M

M

M

f

M N
i pm

f
m n

M N
i pm

f
m n

M N
i pm

f
m n

DQFT e m n

e e m n qn j qnMN N N

e e m n qnMN N

e e m n qn i qnMN N N

π

π

π

π π

π

π π

− −
−

= =

− −
−

= =

− −
−

= =

⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦

∑∑

∑∑

∑∑

      

  ( )221 1

0 0

1 , ,NM

M N
i qni pm

f f
m n

e e e m n DFT e m nMN
ππ

− −
−−

= =

= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑ . (14) 

Then, from (9), we obtain (12).       # 

[Theorem 2] Similarly, if ef[m, n] is an eigenvector of the 2-D 
DFT that satisfies (9) and ef[m, n] is odd along n:      
                          ef[m, n] = −ef[m, N−n],       (15) 
then it is also an eigenvector of the QDFT, but the eigenvalue is 
changed into −λk.        

                    ( ) ( ), ,f fDQFT e m n e m n kλ= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (16) 

(Proof): Since 

                 ( )1

0

2, cos 0
N

f
n

e m n qnN
π−

=

=⎡ ⎤⎣ ⎦∑  (from (15)),     (17) 

( )

( )( )

( ) ( )( )( )

2

2

1 1

0 0

1 1

0 0

,

21 , sin

2 21 , cos sin

M

M

f

M N
i pm

f
m n

M N
i pm

f
m n

DQFT e m n

e e m n qn jMN N

e e m n qn i qn ijMN N N

π

π

π

π π

− −
−

= =

− −
−

= =

⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦

= − −⎡ ⎤⎣ ⎦

∑∑

∑∑

 

( )( ) ( ), ,f fDFT e m n k e m n kλ= − = ⋅ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .  # 

[Theorem 3] By contrast, if ef[m, n] is an eigenvector of the 2-D 
DFT that satisfies (9) and ef[m, n] is even along m:                
                          ef[m, n] = ef[M−m, n],         (18) 
then ef[m, n] is also an eigenvector of the DQFT but the eigen-
value is changed into λq:     

              ( ), ,f f qDQFT e m n e m n λ=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,   (19) 

     where qλ λ=  if λ = ±1,    q jλ = ±  if λ = ±i.     (20) 

(Proof): From (18), the inner product of ef[m, n] and sin(2πpm/N) 
is zero. Therefore,           

   ( ) 21 1

0 0

21, cos( ) , N

M N
j qn

f f
m n

DQFT e m n pm e m n eMN M
ππ− −

−

= =

=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑   

   ( ) 21 1

0 0

2 21 , cos( ) sin( ) N

M N
j qn

f
m n

e m n pm j pm eMN M M
ππ π− −

−

= =

= −⎡ ⎤⎣ ⎦∑∑ ,    

   ( ) 221 1

0 0

1, , NM

M N
j qnj pm

f f
m n

DQFT e m n e m n e eMN
ππ

− −
−−

= =

=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑  

                                 ,f qe m n λ= ⎡ ⎤⎣ ⎦ .  # 

[Theorem 4] If ef[m, n] satisfies (9) and is odd along m:                  
                         ef[m, n] = −ef[M−m, n],              (21) 
then      
                  ( ), , ( )f f qDQFT e m n e m n kλ= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,     (22) 

where λq is defined in (20).  
(Proof): Since the inner product of ef[m, n] and cos(2πpm/N) is 
zero, if we use ef,r[m, n] and ef,i[m, n] to denote the real part and 
the imaginary part of ef[m, n], then           

( )
2

2

2

1 1

0 0

1 1

, ,
0 0

1 1

, ,
0 0

,

21 sin( ) ,

21 ( )( )sin( )( , , )

21 ( )( , , )( )sin( )

N

N

N

f

M N
j qn

f
m n

M N
j qn

f r f i
m n

M N
j qn

f r f i
m n

DQFT e m n

i pm e m n eMN M

k j pm e m n ie m n eMN M

k e m n ie m n j pm eMN M

π

π

π

π

π

π

− −
−

= =

− −
−

= =

− −
−

= =

⎡ ⎤⎣ ⎦

= − ⎡ ⎤⎣ ⎦

= − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑∑

∑∑

∑∑

            

( ) 221 1

, ,
0 0

1 ( ) , , NM

M N
j qnj pm

f r f i
m n

k e m n je m n e eMN
ππ

− −
−−

= =

= − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑ . (23) 

From the fact that both ef,r[m, n] and ef,i[m, n] are the eigenvectors 
of the DFT, we obtain         

  ( ) , ,, ( , ( ) , )f f r q f i qDQFT e m n e m n k e m n jλ λ= − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦   

  , ,( , ( ) , ( ) )f r q f i qe m n k e m n i kλ λ= − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦    

  , ,( , , )( ) , ( )f r f i q f qe m n e m n i k e m n kλ λ= + − = −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . # 

[Corollary 1] From Theorems 1-4, we can conclude that if ef[m, n] 
is a 2-D DFT eigenvector in the complex field and ef[m, n] = ±ef[m, 
N−n] or ef[m, n] = ±ef[M−m, n], then it is also an eigenvector of 
the DQFT.  

By contrast, if ef[m, n] is a 2-D DFT eigenvector, but none of 
the symmetry relations in (11), (15), (18), and (21) is satisfied, 
then ef[m, n] is not an eigenvector of the DQFT. This can be 
proven from the fact that the even part and the odd part of ef[m, n] 
will be separated into different eigenspaces of the DQFT.  

[Corollary 2] Moreover, since the DFT has four eigenvalues: 1, 
−1, i, and −i [7], from (12), (16), (19), and (22), we can conclude 
that the DQFT has 8 possible eigenvalues, which are 1, −1, i, −i, j, 
−j, k, and −k.  

Specially, in Theorems 1-4, we can choose the 2-D DFT ei-
genvectors as the discrete Hermite-Gaussian functions:   

                       , ,,f M a N be m n h m h n=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,             (24) 
where hM,a[m] is the ath discrete Hermite-Gaussian function of the 
1-D M-point DFT. It can be derived from the commuting matrix 
method as in [7][8][11]. {hM,a[m]hN,b[n], a = 0, 1, 2, …, M−2, M1, 
b = 0, 1, 2, …, N−2, N1} forms a complete and orthogonal eigen-
vector set of the 2-D DFT, where 
       M1 = M−1  if M is odd,    M1 = M if M is even,  (25) 
and N1 is defined in the  similar way. The eigenvalue of the 2-D 
DFT corresponding to hM,a[m]hN,b[n] is (−i)a+b:  

         ( ) ( ), , , ,
a b

M a N b M a N bDFT h m h n h m h n i +
= −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .   (26) 

1875



Table 1  The eigenvalues of the DQFT corresponding to the dis-
crete Hermite-Gaussian eigenvectors hM,a[m]hN,b[n].  

Conditions Eigenvalues of the 
DFT 

Eigenvalues of 
the DQFT  

((a))4= 0, ((b))4= 0  or 
((a))4= 2, ((b))4= 2 1 

((a))4= 1, ((b))4= 3  or  
((a))4= 3, ((b))4= 1 

1 
−k 

((a))4= 1, ((b))4= 0  or  
((a))4= 3, ((b))4= 2 −i 

((a))4= 0, ((b))4= 1  or  
((a))4= 2, ((b))4= 3 

−i 
−j 

((a))4= 0, ((b))4=2  or  
((a))4= 2, ((b))4= 0 −1 

((a))4= 1, ((b))4= 1  or  
((a))4= 3, ((b))4= 3 

−1 
k 

((a))4= 1, ((b))4= 2  or  
((a))4= 3, ((b))4= 0 i 

((a))4= 0, ((b))4= 3  or  
((a))4= 2, ((b))4= 1 

i 
j 

Since [7][8][11],    

                        ( ), ,1 b
N b N bh n h N n= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,          (27) 

i.e., ef[m, n] = hM,a[m]hN,b[n] is even or odd symmetric along n, 
thus, from Theorems 1 and 2, we have:  

[Theorem 5] The separable discrete Hermite-Gaussian functions 
in (24) are also the eigenvectors of the DQFT and   

     ( ) ( ), , , ,
a b

M a N b M a N bDQFT h m h n h m h n i +
= −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦      (28) 

                                                            when b is even, 

     ( ) ( ), , , , ( )a b
M a N b M a N bDQFT h m h n h m h n i k+

= − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (29)              

                                                             when b is odd.     
Moreover, as the case of the DFT, {hM,a[m]hN,b[n], a = 0, 1, 2, …., 
M−2, M1, b = 0, 1, 2, …., N−2, N1} also forms a complete and 
orthogonal eigenvector set for the DQFT. 

From (28) and (29), the DQFT has 8 distinct eigenvalues, 
which include ±1, ±i, ±j, and ±k.  

We list the relation among a, b, and the eigenvalues of the 
DQFT in Table 1, where (( ))4 means the remainder of a number 
after being divided by 4 (e.g., ((15))4 = ((3⋅4+3))4 = 3). Note that 
each eigenspace of the original DFT corresponds to two eigen-
spaces of the DQFT.   

 
We can use the similar way to derive the “left-sided” eigen-

vectors and eigenvalues of the DQFT (see (8)). From the similar 
process as those in Theorems 1-4, we obtain:     
[Theorem 6] Suppose that ef[m, n] is an eigenvector of the 2-D 
DFT in the complex filed, as in (9). Then      

     (a) ( ), ,f fDQFT e m n e m nλ=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (30) 

           when ef[m, n] = ef[m, N−n],  

     (b) ( ), ( ) ,f fDQFT e m n k e m nλ= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (31) 

          when ef[m, n] = −ef[m, N−n] and  ef[m, n] is real,    

     (c) ( ), ,f q fDQFT e m n e m nλ=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (λq is defined in (20)) (32) 

          when ef[m, n] = ef[M−m, n] and ef[m, n] is real or λ = ±1. 

     (d) ( ), ( ) ,f q fDQFT e m n k e m nλ= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦   (33) 

          when ef[m, n] = −ef[M−m, n] and ef[m, n] is real or λ = ±i.  

Note that, in the right-sided case, ef[m, n] is not constrained to be a 
real function. However, in the left-sided case, when  ef[m, n] = 
−ef[m, N−n],  ef[m, n] = ef[M−m, n] and λ = ±i, and  ef[m, n] = 
−ef[M−m, n] and λ = ±1, ef[m, n] should be a real function. Other-
wise, it is not an eigenvector of the DQFT.   
[Corollary 3] As the right-sided case, we can also prove that the 
separable discrete Hermite-Gaussian functions in (24) also form a 
complete and orthogonal eigenvector set for the DQFT in the left-
sided case. Moreover, the eigenvalues listed in Table 2 are also 
valid for the left-sided case.  
 
3.    EIGENVECTORS AND EIGENFUNCTIONS OF DISCRETE  

REDUCED BIQUATERNION FOURIER TRANSFORMS  
In the reduced biquaternion algebra, the idempotent elements E1 
and E2 as follows play very important roles            
               1 (1 ) / 2E j= + ,   2 (1 ) / 2E j= − . (34)   
They satisfy the properties of  

          2 -1
1 2 1 1 1 10,   ..... ,n nE E E E E E= = = = =     (35) 

                              2 -1
2 2 2 2..... n nE E E E= = = = .  (36) 

A reduced biquaternion number in (4) can be re-expressed by the 
idempotent element form as: 
                        1 1 2 2q q E q E= + ,   where  (37) 

    1 ( )r j i kq q q i q q= + + + ,  2 ( )r j i kq q q i q q= − + − . (38) 
Therefore, 

  ( ) ( ) ( )2 2 2exp cos sink qn qn k qnN N N
π π π− = −   (39) 

( ) ( ) ( ) ( )1 2
2 2 2 2cos sin cos sinqn i qn E qn i qn EN N N N
π π π π⎡ ⎤ ⎡ ⎤= − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.            

Thus, the DRBQFT in (6) can be rewritten as  

   
( )

( ) ( )1 1

1 1
0 0

,

2 21 exp exp ,
M N

m n

DRBQFT x m n

i pm i qn x m n EMN M N
π π− −

= =

⎡ ⎤⎣ ⎦

= − − ⎡ ⎤⎣ ⎦∑∑
 

      ( ) ( )1 1

2 2
0 0

2 21 exp exp ,
M N

m n
i pm i qn x m n EMN M N
π π− −

= =

+ − ⎡ ⎤⎣ ⎦∑∑ , (40) 

where x1[m, n] = xr[m, n]+xj[m, n] + i(xi[m, n]+xk[m, n]) and x2[m, 
n] = xr[m, n]−xj[m, n] + i(xi[m, n]−xk[m, n]). Therefore, the 
DRBQFT also has a close relation with the 2-D DFT in the com-
plex field and we can use the eigenvectors and eigenvalues of the 
2-D DFT to derive those of the DRBQFT.  
[Theorem 7] Suppose that ef[m, n] is the eigenvector of the 2-D 
DFT in the complex field, as in (9). If     
                           ef[m, n] = ef[m, N−n],   (41) 
then it satisfies (13) and the DRBQFT of ef[m, n] is  

( )

( ) ( )
( ) ( )
( )( )

1 1

1
0 0

1 1

2
0 0

1 1

1 2
0 0

,

2 21 exp cos ,

2 21 exp cos ,

2 21 exp , ,

f

M N

f
m n

M N

f
m n

N N

f f
m n

DRBQFT e m n

i pm qn e m n EMN M N

i pm qn e m n EMN M N

i pm i qn e m n E e m n EMN N N

π π

π π

π π

− −

= =

− −

= =

− −

= =

⎡ ⎤⎣ ⎦

= − ⎡ ⎤⎣ ⎦

+ − ⎡ ⎤⎣ ⎦

= − − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑∑

∑∑

∑∑

 

( )1 2, , ,f f fe m n E e m n E e m nλ λ= + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .  (42) 

That is, ef[m, n] is also an eigenvector of the DRBQFT and the 
corresponding eigenvalue is also λ.      
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Table2  The eigenvalues of the DRBQFT corresponding to the 
discrete Hermite-Gaussian eigenvectors hM,a[m]hN,b[n].  

Conditions Eigenvalues of the 
DFT 

Eigenvalues of 
the DRBQFT  

((a))4= 0, ((b))4= 0  or 
((a))4= 2, ((b))4= 2 1 

((a))4= 1, ((b))4= 3  or  
((a))4= 3, ((b))4= 1 

1 
j 

((a))4= 1, ((b))4= 0  or  
((a))4= 3, ((b))4= 2 −i 

((a))4= 0, ((b))4= 1  or  
((a))4= 2, ((b))4= 3 

−i 
−k 

((a))4= 0, ((b))4=2  or  
((a))4= 2, ((b))4= 0 −1 

((a))4= 1, ((b))4= 1  or  
((a))4= 3, ((b))4= 3 

−1 
−j 

((a))4= 1, ((b))4= 2  or  
((a))4= 3, ((b))4= 0 i 

((a))4= 0, ((b))4= 3  or  
((a))4= 2, ((b))4= 1 

i 
k 

 
[Theorem 8] Similarly, if ef[m, n] is the eigenvector of the 2-D 
DFT and  
                          ef[m, n] = ef[M−m, n],    (43) 
then since the inner product of ef[m, n] and sin(2πpm/N) is zero, 
the DRBQFT of ef[m, n] is  
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( ) ( )
( ) ( )

( )
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2 22 2
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1
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1 1

2
0 0
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1 2
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1
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2 21 cos exp ,

2 21 cos exp ,

1 , ,

[ , ] [ ,

N NM M

f

M N

f
m n

M N

f
m n
M N

i qn i qni pm i pm
f f

m n

f f

DRBQFT e m n

pm i qn e m n EMN M N

pm i qn e m n EMN M N

e e e m n E e e e m n EMN

DFT e m n E IDFT e m

π ππ π

π π

π π

− −

= =

− −

= =

− −
−−

= =

= − ⎡ ⎤⎣ ⎦

+ ⎡ ⎤⎣ ⎦

= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= +

∑∑

∑∑

∑∑

( ) 2]n E

 

  ( )1
1 2 ,fE E e m nλ λ−= + ⎡ ⎤⎣ ⎦ . (44) 

That is, ef[m, n] is still the eigenvector of the DRBQFT, but the 
eigenvalues is changed into λE1+ λ−1E2.           

[Theorem 9] Using the similar ways, we can also prove that if 
ef[m, n] is an eigenvector of the 2-D DFT that satisfies (9) and ef[m, 
n] = −ef[m, N−n], then   

                ( ), ,f fDRBQFT e m n j e m nλ=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .    (45) 

If ef[m, n] satisfies (9) and ef[m, n] = −ef[M−m, n], then   

         ( ) ( )1
1 2, ,f fDRBQFT e m n E E e m nλ λ−= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .     (46) 

Therefore, from Theorems 7, 8, and 9, if ef[m, n] is an eigenvector 
of the 2-D DFT in the complex field and ef[m, n] = ±ef[m, N−n] or 
ef[m, n] = ±ef[M−m, n], then it is also an eigenvector of the 
DRBQFT. Furthermore, from (42), (44), (45), and (46), the 
DRBQFT will have 8 possible eigenvalues (±1, ±i, ±j, and ±k).   

[Theorem 10] As the quaternion case, the separable discrete Her-
mite-Gaussian functions {hM,a[m]hN,b[n], a = 0, 1, 2, …, M−2, M1, 
b = 0, 1, 2, …, N−2, N1} also form a complete and orthogonal 
eigenvector set for the DRBQFT. Moreover, from (26), (42), and 
(45), we can conclude that    

  ( ) ( ), , , ,
a b

M a N b M a N bDRBQFT h m h n i h m h n+
= −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

                                                              if b is even,     (47) 

  ( ) ( ), , , ,
a b

M a N b M a N bDRBQFT h m h n j i h m h n+
= −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦   

                                                               if b is odd.      (48) 
We list the relations among a, b, and the eigenvalues of the 
DRBQFT in Table 2. Note that the 2-D DFT in the complex field 
has 4 eigenspaces (±1 and ±i). By contrast, the DRBQFT will have 
8 eigenspaces (±1, ±i ±j, and ±k).  
 

4.    DISCRETE FRACTIONAL QUATERNION AND 
BIQUATERNION FOURIER TRANSFORMS          

In [9], Xu et al. derived the continuous fractional quaternion Fou-
rier transform based on generalizing the integral kernel. In this 
section, we will derive its discrete counterpart, i.e., the discrete 
fractional quaternion Fourier transform (DFRQFT) and the 
discrete fractional reduced biquaternion Fourier transform. 
(DFRRBQFT).  

In [10][11], the conventional DFT was generalized into the 
discrete fractional Fourier transform (DFRFT) based on eigenvec-
tor decomposition. Since the eigenvectors and the eigenvalues of 
the DQFT and the DRBQFT have been derived in this paper, we 
can also use the method of eigenvector decomposition to derive 
the DFRQFT and the DFRRBQFT successfully. As the DFRFT 
[10][11], the DFRQFT and the DFRRBQFT will be useful in sig-
nal and image processing.  

To derive the DFRQFT, first, since the discrete Hermite-
Gaussian functions hM,a[m]hN,b[n] in (24) form a complete and 
orthogonal eigenvector set for the DQFT, any function in the qua-
ternion field can be decomposed as a summation of hM,a[m]hN,b[n]: 

                
1 1

, , ,
0 0

,
M N

a b M a N b
a b

x m n h m h nτ
= =

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑∑ ,         (49) 

where m, n = 0, 1, 2, …, N−1,  M1 and N1 are defined as in (16),                
               τ M−1 = 0 if M is even,   τ N−1 = 0 if N is even,   (50) 

               
1 1

, , ,
0 0

,
M N

a b M a N b
m n

x m n h m h nτ
− −

= =

= ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑∑ .                 (51) 

Here, we suppose that hM,a[m]hN,b[n] has been normalized:  

                      
1 1

2 2
, ,

0 0
1

M N

M a N b
m n

h m h n
− −

= =

= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑ .           (52) 

After substituting (49) into (3), we obtain  

    ( ) ( ) ( )
1 1

, , ,
0 0

,
M N

a b
a b M a N b

a b
DQFT x m n i j h m h nτ

= =

= − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑∑ . (53)     

Therefore, we suggest that the DFRQFT can be defined as the fol-
lowing process:  
(Step 1) First, we decompose the input x[m, n] by (49) and deter-
mine the coefficients τa,b from (51).  
(Step 2) Calculate    

   ( ) ( )cos siniae a i aφ φ φ− = − , ( ) ( )cos sinjbe b j bθ θ θ− = − . (54) 

(Step 3) Then, the DFRQFT can be defined as 

 ( )
1 1

, , , ,
0 0

,
M N

ia jb
a b M a N b

a b
DFRQFT x m n e e h m h nφ θ

φ θ τ− −

= =

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑∑ . (55)          

There are some interesting properties that can be noticed. First, 
when φ = θ = π/2, the DFRQFT becomes the original DQFT. When 
φ = θ = −π/2, it becomes the inverse DQFT. When φ = π/2, θ = 0 
and φ = 0, θ = π/2, it becomes the 1-D DQFT along the m-axis and 
the n-axis, respectively.      
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Moreover, it is no hard to prove that the DFRQFT has the ad-
ditivity property as follows:   

               ( ){ }1 1 2 2, , ,DFRQFT DFRQFT x m nφ θ φ θ ⎡ ⎤⎣ ⎦      

            ( )1 2 1 2, ,DFRQFT x m nφ φ θ θ+ += ⎡ ⎤⎣ ⎦ .   (56) 

From the additivity property, we can conclude that the DFRQFT 
with parameters −φ and −θ is the inverse operation of the DFRQFT 
with parameters φ and θ.   

To define the DFRRBQFT, we can also use the fact that the 
discrete Hermite-Gaussian functions in (24) form a complete and 
orthogonal eigenvector set for the DRBQFT. From (40), (26), and  

   ( )221 1

0 0

1 NM

M N a bi qni pm
a b a b

m n
e e h m h n i h m h nMN

ππ− −
−−

= =

= −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑∑ ,  (57) 

we obtain    

          ( )a bDRBQFT h m h n⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦     

      ( ) ( ){ }1 1

1 2
0 0

M N
a b a b

a b
a b

h m h n i E i E+ −

= =

= − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑ .  (58) 

Therefore, the DFRRBQFT can be defined as  

        ( ), ,DFRRBQFT x m nφ θ ⎡ ⎤⎣ ⎦       

     ( ) ( ){ }1 1

1 2
0 0

M N
i a b i a b

a b
a b

h m h m e E e Eφ θ φ θ− + − −

= =

= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑ . (59) 

Note that  

      ( ) ( ) ( )1 2 1 2
i a b i a b ia ib ibe E e E e e E e Eφ θ φ θ φ θ θ− + − − − −+ = +       

  ( )1 2 2 1cos( )( ) sin( )( )iae b E E i b E Eφ θ θ−= + + −      

  ( )cos( ) sin( )( )ia ia kbe b i b j e eφ φ θθ θ− − −= + − = .      (60) 

Thus, the DFRRBQFT can be defined as the following way  
(Step 1) First, decompose the input x[m, n] by (49) and determine 
the coefficients τa,b from (51).   
(Step 2) Calculate                 

  ( ) ( )cos siniae a i aφ φ φ− = − ,  ( ) ( )cos sinkbe b k bθ θ θ− = − . (61) 

(Step 3) Then, the DFRRBQFT can be defined as        

            ( ), ,DFRRBQFT x m nφ θ ⎡ ⎤⎣ ⎦                

         ( ) ( )
1 1

,
0 0

exp exp
M N

a b a b
a b

h m h m ia kbτ φ θ
= =

= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑ .   (62) 

As the case of the DFRFT and the DFRQFT, when φ = θ = π/2, 
the DFRRBQFT becomes the original DRBQFT. Moreover, the 
DFRRBQFT also has the additivity property:  

             ( ){ }1 1 2 2, , ,DFRRBQFT DFRRBQFT x m nφ θ φ θ ⎡ ⎤⎣ ⎦      

          ( )1 2 1 2, ,DFRRBQFT x m nφ φ θ θ+ += ⎡ ⎤⎣ ⎦          (63)   

and the DFRRBQFT with parameters −φ and −θ is the inverse op-
eration of the DFRRBQFT with parameters φ and θ.   
 

5.    EXTENSION TO THE CONTINUOUS CASE             
In fact, the results in Sections 2 and 3 can be extended to the con-
tinuous case. We can use the similar way to find the eigenfunctions 
and eigenvalues of the continuous quaternion Fourier transform 
(QFT) and the continuous reduced biquaternion Fourier transform 
(RBQFT). Theorems 1 to 10 can all be applied to the continuous 

case, except that the 2-D FT, the DQFT, and the DRBQFT are 
replaced by their continuous counterparts.   

As the discrete case, if ef(x, y) is an eigenfunction of the con-
tinuous 2-D FT and 
              ef(x, y) = ±ef(x, −y)   or   ef(x, y) = ±ef(−x, y),  (64) 
then ef(x, y) is also the right-sided eigenfunction of the continuous 
QFT and the eigenfunction of the continuous RBQFT. Moreover, 
the continuous 2-D Hermite-Gaussian functions (i.e., the continu-
ous counterpart of (24)) form a complete and orthogonal eigenfunc-
tion set for the QFT and the RBQFT. Furthermore, both the con-
tinuous QFT and the continuous RBQFT also have 8 distinct ei-
genvalues (±1, ±i, ±j, and ±k). 
 

6.     CONCLUSIONS              
In this paper, we derived the eigenfunctions and eigenvectors of the 
DQFT (including the right-sided and the left-sided forms) and the 
DRBQFT. We find that the 2-D discrete Hermite-Gaussian func-
tions, which are the eigenvectors of the 2-D DFT in the complex 
field, also form a complete and orthogonal eigenvector set for the 
DQFT and the DRBQFT. Furthermore, both the DQFT and the 
DRBQFT have 8 eigenspaces, which correspond to the eigenvalues 
of ±1, ±i, ±j, and ±k. We also use the eigenvectors and eigenvalues 
we found to derive the discrete fractional quaternion and reduced 
biquaternion Fourier transforms.               
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