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ABSTRACT 

The texture analysis of the retinal nerve fiber layer (RNFL) 
in colour fundus images is a promising tool for early glau-
coma diagnosis. This paper describes model-based method 
for detection of changes in the RNFL. The method utilizes 
Gaussian Markov random fields (GMRF) and the least-
square error (LSE) estimate for the local RNFL texture 
modelling. The model parameters are used as a texture fea-
tures and non-linear classifier based on the Bayesian rule is 
used for classification of healthy and glaucomatous RNFL 
tissue. The proposed features are tested in the sense of clas-
sification errors and also they are applied for segmentation 
of RNFL defects in a high-resolution colour fundus-camera 
images. The results are also compared with the Optical Co-
herence Tomography images regarded as a gold standard 
for our application due to the possibility of quantitative 
RNFL thickness measurement. 

1. INTRODUCTION 

Glaucoma is one of the most common causes of blindness 
with an average occurrence of 4.2% for ages above 60 years 
[15]. Glaucoma is characterized by retinal changes, particu-
larly in the region of the optic nerve head (ONH): an en-
largement of the ONH excavation, ONH hemorrhages, thin-
ning of the neuroretinal rim, asymmetry of the cup between 
left and right eye, and progressive retinal nerve fiber layer 
(RNFL) atrophy. This RNFL loss can be relatively well in-
dicated as a texture changes in fundus photographs (Fig-
ure 1). Early detection of the RNFL atrophy plays a crucial 
role in the effective treatment, because the retinal nerve fi-
bers cannot be revitalized. Therefore, the analysis of retinal 
images has become an important issue in glaucoma diagno-
sis. The quantitative measurement of RNFL thickness with 
the Optical Coherence Tomography (OCT) is widely pro-
moted by the ophthalmologists and a lot of papers concern-
ing this modality have been already published, e.g. [3, 8, 
14]. However the examination by OCT is still less available 
due to the high costs in many ophthalmology clinics all over 
the world. The main requirement in glaucoma diagnosis is 
an early detection of RNFL degeneration in order to set up 
the treatment as soon as possible. Hence, a mass screening 
program seems to be suitable for supporting the diagnosis. 
Well, an extensively available fundus-camera imaging can 
be offered for such a reasonable glaucoma screening. 

There is a high effort to base the automated RNFL anal-
ysis on fundus-camera images since the 1980 [10], but until 
now, there is no routinely used method allowing automated 
RNFL diagnosis using only fundus camera images; al-
though many contributions concerning this topic have been 
already published, e.g. [1, 2, 4, 6, 9, 17, 19]. 

Our contribution deals with a new model-based method 
utilizing Gaussian Markov random fields (GMRF) to model 
the local RNFL texture in high-resolution colour fundus-
camera images. The model parameters are estimated by the 
least square error (LSE) approach and they are used as a tex-
ture classification features. Non-linear Bayesian classifier is 
used for discrimination between healthy and glaucomatous 
RNFL tissue. The classification performance is evaluated 
using cross-validation approach and also supervised machine 
learning is applied in order to detect RNFL loss in diagnosti-
cally important region in fundus images. The results are fi-
nally compared with the OCT data. 

 

 

Figure 1 – Example of typical fundus image with distinctive 
RNFL loss; an average of green and blue channel of RGB colour 

image data is utilized. 

2. EXPERIMENTAL DATA 

Our retinal image database contains 18 images of healthy 
patients and 10 images of patients with glaucoma (RNFL 
defects). All images were acquired by digital fundus camera 
CANON CF-60UDi with 3504 × 2336 pixel resolution in 
RGB colour space and with 60° field of view. The JPEG im-
age format with very low compression was applied. The pro-
posed method utilizes only green and blue channel of RGB 
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image data (Figure 1). This is because the red channel does 
not contain any useful information about RNFL texture. Ex-
perimentally, it was found that an average of green and blue 
channel is the most relevant solution providing relatively 
good appearance of RNFL striation [16]. 

Using fundus camera images, the healthy RNFL tissue 
is characterized by lightly stripy textural appearance (Fig-
ure 2a), while RNFL defects appear with lack of such the 
lightly striation. 

The method has been tested on manually selected 
square-shaped image regions with size 97 × 97 pixels from 
all retinal images included in the database. These image 
regions were divided into three classes (Figure 2b): 

Class A - 141 image regions representing tissue with 
RNFL striations of glaucomatous patients; 

Class B - 142 image regions representing tissue with-
out RNFL striations of glaucomatous patients (RNFL loss); 

Class C - 283 image regions representing RNFL stria-
tions of healthy patients (control group). 

We have three classes of RNFL tissue, because we as-
sume an eventual progression of the disease represented by 
class A as a sub step in degeneration of the nerve fibers. 
 

 
a) 

Class A 

 
 

Class B 

 
b) 

Class C 

 
 

Figure 2 – a) Example of the RNFL textural appearance, b) Ex-
ample of randomly selected image regions according to the three 

classes of retinal tissue in the test dataset. 

3. METHOD 

3.1 Gaussian Markov random fields 

Markov random fields texture modelling is an efficient tool 
enabling description of a probability of spatial interactions in 
a textural image so it has been extensively used in a lot of 
image processing applications, e.g. [18]. The detailed theory 
about Markov random field modelling in image analysis and 
texture classification can be found in [20]. 

Our paper introduces GMRF as a model of the RNFL 
providing textural features aimed to classify healthy and 
glaucomatous tissue in the fundus images. 
 The GMRF models an image texture y(s), which is rep-
resented by a set of zero mean observations [18]: 
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for an M × M image lattice Ω. The GMRF model is a statio-
nary non-causal two-dimensional autoregressive process 
assuming that the individual observations are governed by 
the following difference equation [18]: 
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where Ns is a neighborhood set centered at pixel s, φr is a 
model parameter of a particular neighbor r, and e(s) is a sta-
tionary Gaussian noise process with zero mean and known 
variance σ :         
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A neighborhood structure depends directly on the order 
and the type of the model. We assume a fifth-order symme-
tric rotation-invariant neighborhood structure on rectangular 
lattice, as depicted in Figure 3. 
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Figure 3 – Fifth-order symmetric rotation-invariant neighborhood. 

 According to this we have 6 parameters (texture fea-
tures): five parameters describe influence of the neighbors to 
the central pixel and one Gaussian parameter σ describes 
model noise variance. These 6 features can be estimated in 
the least square error (LSE) sense [18]. The parameters are 
estimated by following equations: 
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for an Ith-order neighborhood. 
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3.2 Bayesian texture classification 

The discrimination ability of proposed features has been 
tested by evaluation of the classification error using the 
Bayesian classifier. 

Assume that we have a feature vector 

[ ]Dxxxx ,...,, 21=  of the dimension D. The probability 

that the feature vector belongs to a particular class ωk can be 
referred to as a posterior probability and computed with the 
Bayes formula [13]: 
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where )|( kxp ω is a probability density function of class ωk 

in the feature space and )( kP ω is the a priori probability of 

the class ωk before measuring any features. It can be esti-
mated from the class proportions in the training set of super-
vised labelled data [13]. The probability )(xp is only a scal-

ing factor providing the sum of posterior probabilities is one. 
It can be computed by 
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The proposed classifier assumes that the class-conditional 

probability density function )|( kxp ω  is modelled by Gaus-

sians and thus describing a distribution of particular feature 
vectors in the feature space inside the particular class [13]. 
The Gaussian class model parameters can be estimated by 
several methods from the training dataset via supervised ma-
chine learning [13].  

We use an iterative maximum-likelihood estimate with 
optimization technique based on modified expectation max-
imization algorithm (EM); see [13] for more details. 

4. RESULTS AND DISCUSSION 

4.1 Classification performance evaluation 

The above described test dataset, consisting of three differ-
ent classes of image regions representing the type of RNFL 
tissue, was used for training the classifier. The performance 
was evaluated for all particular combinations of classes 
(C-B, A-B, A-C, C-B-A). Six proposed features in the fea-
ture vector were sorted according to their relevance to target 
class in the sense of maximum relevance and minimum re-
dundancy (MRMR) approach based on the evaluation of 
mutual information between particular features [5]. 

The repeated random sub-sampling cross-validation me-
thod was applied to test the classification accuracy. A 70% of 
randomly selected features from feature set were used for 
training, while remaining 30% was used for testing the pro-
posed classifier. The training and testing procedure was run 
100 times and the average classification error was computed. 
The results for particular combination of classes are shown in 
Table 1. 

Table 1 – Classification errors in percents for all combinations of 
classes and features sorted according to their relevance; index i of 

the feature fi represents an order in the feature vector. 

Features 
selection C – B A – B A – C C – B – A 

f1 8.83 ± 2.53 9.13 ± 2.15 46.52 ± 5.06 37.13 ± 3.36 

f1-f5 6.94 ± 2.81 7.17 ± 2.46 43.58 ± 4.81 34.10 ± 3.33 

f1-f5-f6 4.90 ± 2.11 7.08 ± 2.39 38.01 ± 4.90 30.25 ± 3.36 

f1-f5-f6-f4 1.83 ± 1.62 5.92 ± 2.40 24.52 ± 4.23 20.26 ± 3.21 
f1-f5-f6-

f4-f3 
0.55 ± 0.82± 0.82± 0.82± 0.82 4.99 ± 2.41 14.88 ± 3.25 13.35 ± 2.52 

f1-f5-f6-
f4-f3-f2 

0.62 ± 0.80 3.05 ± 1.51± 1.51± 1.51± 1.51 11.71 ± 3.18± 3.18± 3.18± 3.18 9.88 ± 2.28± 2.28± 2.28± 2.28 

 
The results in Table 1 indicate the best classification 

performance for usage of all the features together. The best 
separation ability has been achieved between classes C – B 
representing control group and RNFL defects, respectively. It 
means the RNFL loss can be quite well distinguished from 
the RNFL tissue of healthy patients with the average classifi-
cation error of 0.55%. The classification error between 
classes A – B is worse, but still well performed (3.05%). This 
is probably caused by lower appearance of the RNFL stria-
tion in class A due to the glaucoma progression in the eyes 
affected by glaucoma. The higher classification error was 
achieved for classes A – C (11.71%); both classes contain 
RNFL texture. Nevertheless, this still relatively low error 
proves that separation of the RNFL into the three defined 
classes is reasonable.  

Using three-state classifier allows us to distinguish the 
classes from each other (last column in Table 1) with classifi-
cation error of 9.88%. This value represents the classification 
error when we analyze the whole fundus image. In this task 
we try to classify the RNFL defects (class B) and also the 
changes in RNFL striation due to glaucoma progression 
(classes A and C). 

4.2 RNFL loss detection 

Supervised three-state machine learning via Bayesian classi-
fier using labelled training dataset (image regions in classes 
A, B and C) was applied on the input fundus-camera image. 

The testing of input retinal image was performed in the 
rectangular region of interest (ROI) corresponding to the 
diagnostically most important area around the ONH auto-
matically allocated using our previously developed ONH 
detection approach [11]. This method uses simple intensity 
criterion and Hough transform to detect the center of ONH 
and active contours for ONH segmentation. 

The blood vessels need to be masked out so that the tex-
ture would be analyzed only in the non-vessels area. The 
vessels were segmented by our algorithm recently presented 
in [7]. This approach is based on the matched filters with 2D 
impulse responses obtained via averaging of brightness pro-
files of vessels for five different vessel widths. Each of the 
basic masks was rotated in twelve different directions, which 
gives finally a number of 60 masks of the matched filters. 

A small square pixel neighborhood of the same size as 
above described image regions (97 × 97 pixels) was scanned 
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within the non-vessels area of the original image in the ROI 
pixel-by-pixel and the three-state supervised classification 
was performed. 

A fundus-camera image with distinctive RNFL loss of 
glaucomatous patient in our retinal image database was cho-
sen for the analysis. The results of RNFL loss detection are 
presented in Figure 4a. Three colours within the ROI repre-
sent three-state output of the classifier: red – class B (RNFL 
loss) yellow – class A (healthy tissue of patient with glau-
coma), green – class C (healthy tissue of patient without 
glaucoma). The analyzed image was subjectively compared 
with the RNFL loss marked by experienced ophthalmologist. 
The result shows that the red area was marked correctly. It 
means that the RNFL defect can be detected by the proposed 
approach (Figure 4a). 

The RNFL in image of healthy patient without glaucoma 
has been also analyzed within the ROI (Figure 4b). The out-
put indicates much more green labelled area as we assumed 
than in the previous case of glaucomatous eye. The yellow 
labelled regions could be hypothetically interpreted as RNFL 
tissue possibly suspected of glaucoma, but this is probably 
influenced by the mentioned classification error. However, 
the RNFL detection is also probably influenced by the arte-
facts due to incorrect blood vessels masking or due to spe-
cific physiological or pathological structures, which might be 
occurred in the examined eye and they negatively influence 
retinal image acquisition. 

4.3 Comparison with OCT measurements 

The OCT imaging provides cross-sectional images (B–scans) 
of the retina, which makes it possible to quantitatively meas-
ure the RNFL thickness. Therefore, the OCT image can be 
regarded as a gold standard for our application allowing a 
comparison with proposed RNFL detection in colour fundus 
images. An example of such a B–scan with clearly marked 
RNFL loss by experienced ophthalmologist is shown in Fig-
ure 5b. The result of proposed automated RNFL loss detec-
tion using fundus-camera image of the same patient with 
depiction of cross-sectional B–scan position is illustrated in 
Figure 5a. It can be clearly seen that the RNFL losses corre-
spond quite well. 
 The RNFL thickness measurement using B-scans is 
commercially available and provided by a range of algo-
rithms, e.g. [3, 8, 12]. A comparison of RNFL analysis in 
fundus images with such a RNFL thickness measurement via 
OCT offers an idea of RNFL thickness mapping in fundus 
image. However, this will be largely dependent on the resolu-
tion and quality of fundus-camera images taken. We just have 
only 3 classes of RNFL thickness belonging to the colours in 
Figure 5a. The highest thickness of the RNFL belongs to 
green; mediate RNFL thickness (suspected of glaucoma) is 
represented by yellow and the RNFL losses with zero thick-
ness by red colour, respectively. 
 

 
a) 

 

 
b) 

Figure 4 – Results of RNFL detection; a) left eye of a glaucoma-
tous patient with distinctive RNFL loss, b) left eye of a healthy 

patient without any glaucoma defects. 

 

 
a) 
 

 
b) 

Figure 5 – RNFL loss detection comparing with the OCT B-scan; 
a) Depiction of a B-scan position in rotated section of fundus-

camera image from Figure 4a, b) Example of OCT cross–sectional 
B-scan of the same patient with RNFL loss as in case of a). 
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5. CONCLUSIONS 

The Gaussian Markov random field texture analysis method 
was presented aimed to model the RNFL texture. The results 
indicate that the proposed GMRF features can be quite suc-
cessfully used for discrimination between healthy and glau-
comatous RNFL tissue in connection with the supervised 
machine learning approach based on the non-linear Bayesian 
classifier. The classification performance was quantitatively 
evaluated by repeated random sub-sampling cross-validation 
method with relatively good accuracy – the classification 
error reaches only 0.55% discriminating the image regions 
of classes C – B and 3.05% of classes A – B, respectively. 
Discrimination ability between classes A and C is worse 
with an error of 11.71%; the both classes appear similar with 
the RNFL texture, although one is probably influenced by 
progression of the disease. As well, the classification errors 
were probably caused by the clusters overlapping in the fea-
ture space, because a strong separating hyperplane between 
the particular classes does not exist.  

The three-state supervised classifier was tested within 
the diagnostically important area in the fundus-camera im-
age of patient with glaucoma. The classification results were 
compared with OCT measurements showing a relatively 
good correlation between the RNFL changes. This result 
suggests the possibility of RNFL thickness mapping accord-
ing to the disease progression in further research. 
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