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ABSTRACT

The texture analysis of the retinal nerve fiberelafRNFL)
in colour fundus images is a promising tool for lgaglau-
coma diagnosis. This paper describes model-basedoche
for detection of changes in the RNFL. The methddaeg

There is a high effort to base the automated RN#l-a
ysis on fundus-camera images since the 1980 [1@]uihtil
now, there is no routinely used method allowingoedted
RNFL diagnosis using only fundus camera images; al-
though many contributions concerning this topiceh&een

Gaussian Markov random fields (GMRF) and the least@lready published, e.g. [1,2, 4,6, 9, 17, 19].

square error (LSE) estimate for the local RNFL wesxt
modelling. The model parameters are used as arefta-
tures and non-linear classifier based on the Bayesile is
used for classification of healthy and glaucomat&i$FL
tissue. The proposed features are tested in theesehclas-
sification errors and also they are applied for semtation
of RNFL defects in a high-resolution colour funaasnera
images. The results are also compared with thedap@o-

herence Tomography images regarded as a gold stdnda

for our application due to the possibility of quiative
RNFL thickness measurement.

1. INTRODUCTION

Glaucoma is one of the most common causes of tdggin
with an average occurrence of 4.2% for ages abOweeérs
[15]. Glaucoma is characterized by retinal changasticu-
larly in the region of the optic nerve head (ONHit en-
largement of the ONH excavation, ONH hemorrhadas; t
ning of the neuroretinal rim, asymmetry of the @ghween
left and right eye, and progressive retinal neiterflayer
(RNFL) atrophy. This RNFL loss can be relativelylivwe-
dicated as a texture changes in fundus photogrépiys
ure 1). Early detection of the RNFL atrophy playsracial
role in the effective treatment, because the retisave fi-
bers cannot be revitalized. Therefore, the analyki®tinal
images has become an important issue in glaucoaggah
sis. The quantitative measurement of RNFL thickneitis
the Optical Coherence Tomography (OCT) is widelg-pr
moted by the ophthalmologists and a lot of papersern-
ing this modality have been already published, Bg.8,
14]. However the examination by OCT is still lessitable
due to the high costs in many ophthalmology clirit®ver
the world. The main requirement in glaucoma diagn@s
an early detection of RNFL degeneration in ordesdbup
the treatment as soon as possible. Hence, a masnisg
program seems to be suitable for supporting thgndisis.
Well, an extensively available fundus-camera imggian
be offered for such a reasonable glaucoma screening
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Our contribution deals with a new model-based nmeétho
utilizing Gaussian Markov random fields (GMRF) toael
the local RNFL texture in high-resolution coloumdfus-
camera images. The model parameters are estimgtédteb
least square error (LSE) approach and they areasadex-
ture classification features. Non-linear Bayesitassifier is
used for discrimination between healthy and glawtoos
RNFL tissue. The classification performance is eatdd
using cross-validation approach and also supervisachine
learning is applied in order to detect RNFL lossliegnosti-
cally important region in fundus images. The resalte fi-
nally compared with the OCT data.

Figure 1 — Example of typical fundus image withidigtive
RNFL loss; an average of green and blue channel & &our
image data is utilized.

2. EXPERIMENTAL DATA

Our retinal image database contains 18 images aithye
patients and 10 images of patients with glauconfdHR
defects). All images were acquired by digital fundamera
CANON CF-60UDi with 3504 2336 pixel resolution in
RGB colour space and with 60° field of view. Th&a@im-

age format with very low compression was applidte pro-
posed method utilizes only green and blue chanhBIGB
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image data (Figure 1). This is because the rednghatoes Our paper introduces GMRF as a model of the RNFL
not contain any useful information about RNFL te@ttEx-  providing textural features aimed to classify Healand
perimentally, it was found that an average of graed blue glaucomatous tissue in the fundus images.

channel is the most relevant solution providingatretly The GMRF models an image texty(@), which is rep-
good appearance of RNFL striation [16]. resented by a set of zero mean observations [18]:

Using fundus camera images, the healthy RNFL tissue Doy .
is characterized by lightly stripy textural appese (Fig- y(s),sQ,Q={s=(,j):0<i,j<M -1}
ure 2a), while RNFL defects appear with lack ofhstige
lightly striation.

The method has been tested on manually select
square-shaped image regions with sizex®7 pixels from
all retinal images included in the database. Thesrge
regions were divided into three classes (Figure 2b) = +1) +

Class A - 141 image regions representing tissue with y(s) rDsz]r y(s+r)+&s).

RNFL striations of glaucomatous patients;
Class B- 142 image regions representing tissue withwhereN; is a neighborhood set centered at pisel is a

for anM x M image lattice? The GMRF model is a statio-
Jary non-causal two-dimensional autoregressive ga®c
assuming that the individual observations are gwerby
the following difference equation [18]:

out RNFL striations of glaucomatous patients (RN#4s); model parameter of a particular neighbaande(s)is a sta-
Class C- 283 image regions representing RNFL striationary Gaussian noise process with zero mean aodnk
tions of healthy patients (control group). varianceo:
We have three classes of RNFL tissue, because we as E[e(s)] =0
sume an eventual progression of the disease repeesby '
class A as a sub step in degeneration of the rid¥ees. El_e2 (S)J =0.

A neighborhood structure depends directly on theior
and the type of the model. We assume a fifth-osgerme-
tric rotation-invariant neighborhood structure ectangular
lattice, as depicted in Figure 3.

5]
4]3]4
4)2[1]2]4
5|/3[1]x[1]3]5
4l2[1]2]4
4]3]4
5

Figure 3 — Fifth-order symmetric rotation-invaria&ighborhood.

According to this we have 6 parameters (textuee fe
tures): five parameters describe influence of gighbors to
the central pixel and one Gaussian parametelescribes
model noisevariance. These 6 features can be estimated in
the least square error (LSE) sense [18]. The pdeamare
estimated by following equations:

Figure 2 — a) Example of the RNFL textural appeegab) Ex-
ample of randomly selected image regions accoridiriige three

-1
classes of retinal tissue in the test dataset. Q= {Z q(s)qT (S)} (Z q(s) y(s)] ’
Q Q

3. METHOD

1
_ , g=—>>"(¥(s) - ¢ q(s))’,
3.1 Gaussian Markov random fields M* 45
Markov random fields texture modelling is an effini tool ~ Where
enabling description of a probability of spatiakiractions in
a textural image so it has been extensively useal ot of q(s) = COI{ z y(s+r);i= ].,...,I}
image processing applications, e.g. [18]. The Betaheory rON,
about Markov random field modelling in image aneyand

texture classification can be found in [20]. for anith-order neighborhood.
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3.2 Bayesian texture classification

The discrimination ability of proposed features Hmeen
tested by evaluation of the classification erromgsthe
Bayesian classifier.

Assume that we have a feature

X=[X1,X2,...,XD] of the dimensionD. The probability

that the feature vector belongs to a particulassdda can be
referred to as a posterior probability and computét the
Bayes formula [13]:

p(x] & )P(e)
p(X)

where p(X|a),) is a probability density function of class

P(e, %) =

vector

Table 1 — Classification errors in percents focalhbinations of
classes and features sorted according to theiraede; index of
the featurd; represents an order in the feature vector.

Features
selection

f1 8.83+ 2.53
fi-fs 6.94+ 281
fi-fs-fs | 4.90+2.11
fi-fs-fe-fs | 1.83+ 1.62
f1-fs-fe-
fafs
f1-fs-fe-
fu-fa-fa

C-B A-B A-C C-B-A

9.13+2.15
7.17+2.46
7.08+2.39
5.92+ 2.40

46.52+ 5.06
43.58+ 4.81
38.01+ 4.90
2452+ 423

37.13+ 3.36
34.10+ 3.33
30.25+ 3.36
20.26+ 321

0.55£0.82 | 4.99+241 | 14.88+3.25 | 13.35+2.52

0.62+0.80 | 3.05+151 | 11.71+318 | 9.88+2.28

The results in Table 1 indicate the best classifioa
performance for usage of all the features togeffiee. best

in the feature space arfd(c, ) is the a priori probability of separation ability has been achieved between el&@se B
the classax before measuring any features. It can be estif®presenting control group and RNFL defects, reismy. It

mated from the class proportions in the trainingo$esuper-
vised labelled data [13]. The probabiljp{X) is only a scal-

ing factor providing the sum of posterior probdla§ is one.
It can be computed by

POO =Y. P(x| @)P(@).

The proposed classifier assumes that the classtooad

means the RNFL loss can be quite well distinguisinech
the RNFL tissue of healthy patients with the averelgssifi-
cation error of 0.55%. The classification error viestn
classes A— B is worse, but still well performedE3%6). This
is probably caused by lower appearance of the RétRa-
tion in class A due to the glaucoma progressiothaneyes
affected by glaucoma. The higher classificatiororemwvas
achieved for classes A — C (11.71%); both classetam
RNFL texture. Nevertheless, this still relativelgwi error
proves that separation of the RNFL into the threénedd

probability density functiopp(X | &) is modelled by Gaus- classes is reasonable.

sians and thus describing a distribution of paldicteature
vectors in the feature space inside the partioctlss [13].

Using three-state classifier allows us to distisguihe
classes from each other (last column in Table ff) elassifi-

The Gaussian class model parameters can be egtifpte Cation error of 9.88%. Thigalue represents the classification

several methods from the training dataset via sige ma-
chine learning [13].

error when we analyze the whole fundus image. ig tdsk
we try to classify the RNFL defects (class B) afab dahe

We use an iterative maximum-likelihood estimatehwit changes in RNFL striation due to glaucoma progoessi

optimization technique based on modified expeatati@ax-
imization algorithm (EM); see [13] for more details

4, RESULTS AND DISCUSSION

4.1 Classification performance evaluation

The above described test dataset, consisting eé ttiiffer-
ent classes of image regions representing theadf/iNFL
tissue, was used for training the classifier. Teefggmance
was evaluated for all particular combinations ofssks
(C-B, A-B, A-C, C-B-A). Six proposed features iretfea-
ture vector were sorted according to their releeanctarget

(classes Aand C).

4.2 RNFL loss detection

Supervised three-state machine learning via Bayedéssi-
fier using labelled training dataset (image regionslasses
A, B and C) was applied on the input fundus-canmaege.
The testing of input retinal image was performedhia
rectangular region of interest (ROI) correspondingthe
diagnostically most important area around the ONlb-a
matically allocated using our previously develop@tiH
detection approach [11]. This method uses simplengity
criterion and Hough transform to detect the cenfeDNH

class in the sense of maximum relevance and minimasm @and active contours for ONH segmentation.

dundancy (MRMR) approach based on the evaluation of

mutual information between particular features [5].

The blood vessels need to be masked out so th&tthe
ture would be analyzed only in the non-vessels.arba

The repeated random sub-sampling cross-validatien mvessels were segmented by our algorithm recentiyepted

thod was applied to test the classification acourdad@0% of
randomly selected features from feature set weesl dar
training, while remaining 30% was used for testing pro-
posed classifier. The training and testing proceduas run
100 times and the average classification errorasasputed.
The results for particular combination of classessiown in
Table 1.

in [7]. This approach is based on the matcheddileth 2D
impulse responses obtained via averaging of bragistipro-
files of vessels for five different vessel widtlisach of the
basic masks was rotated in twelve different dicgxtj which
gives finally a number of 60 masks of the matcliléet$.

A small square pixel neighborhood of the same aie
above described image regions 097 pixels) was scanned
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within the non-vessels area of the original imag¢e ROI
pixel-by-pixel and the three-state supervised dlaaton
was performed.

A fundus-camera image with distinctive RNFL loss of
glaucomatous patient in our retinal image datakasecho-
sen for the analysis. The results of RNFL lossdliete are
presented in Figure 4a. Three colours within thd Rpre-
sent three-state output of the classifier: redasscB (RNFL
loss) yellow — class A (healthy tissue of patierthvglau-
coma), green — class C (healthy tissue of patidtiiowt
glaucoma). The analyzed image was subjectively eoeap
with the RNFL loss marked by experienced ophthadgist.
The result shows that the red area was markedotigrré
means that the RNFL defect can be detected byrtpoged
approach (Figure 4a).

The RNFL in image of healthy patient without glaonzo
has been also analyzed within the ROI (Figure #bg out-
put indicates much more green labelled area assaenzed
than in the previous case of glaucomatous eye.yEHlew
labelled regions could be hypothetically interpdess RNFL
tissue possibly suspected of glaucoma, but thjzrabably
influenced by the mentioned classification erroawdver,
the RNFL detection is also probably influenced lhy arte-
facts due to incorrect blood vessels masking ortdugpe-
cific physiological or pathological structures, whimight be
occurred in the examined eye and they negativélyeince

retinal image acquisition. Figure 4 — Results of RNFL detection; a) left eya glaucoma-
tous patient with distinctive RNFL loss, b) left eyfea healthy
4.3 Comparison with OCT measurements patient without any glaucoma defects.

The OCT imaging provides cross-sectional images¢Brs)
of the retina, which makes it possible to quaritiedy meas-
ure the RNFL thickness. Therefore, the OCT image lma
regarded as a gold standard for our applicatioowallg a
comparison with proposed RNFL detection in colaurdus
images. An example of such a B—scan with clearlyketh
RNFL loss by experienced ophthalmologist is shomwig-
ure 5b. The result of proposed automated RNFL dietsc-
tion using fundus-camera image of the same patigifit
depiction of cross-sectional B—scan position igstliated in
Figure 5a. It can be clearly seen that the RNFkdsscorre-
spond quite well.

The RNFL thickness measurement using B-scans is
commercially available and provided by a range Igba
rithms, e.g. [3, 8, 12]. A comparison of RNFL arsiyin
fundus images with such a RNFL thickness measurewien
OCT offers an idea of RNFL thickness mapping indius
image. However, this will be largely dependenttmnriesolu-
tion and quality of fundus-camera images takenjiskehave
only 3 classes of RNFL thickness belonging to tlewrs in
Figure 5a. The highest thickness of the RNFL bedotty
green; mediate RNFL thickness (suspected of glaafasn
represented by yellow and the RNFL losses with feik-
ness by red colour, respectively.

Figure 5 — RNFL loss detection comparing with the (&3can;
a) Depiction of a B-scan position in rotated sectdfundus-
camera image from Figure 4a, b) Example of OCT eszsdtional
B-scan of the same patient with RNFL loss as in oasg.
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5. CONCLUSIONS

The Gaussian Markov random field texture analyséshaod
was presented aimed to model the RNFL texture.rébgts
indicate that the proposed GMRF features can bie guic-
cessfully used for discrimination between healthg glau-
comatous RNFL tissue in connection with the suppedi
machine learning approach based on the non-linagedan
classifier. The classification performance was gtetively
evaluated by repeated random sub-sampling crogiatiah
method with relatively good accuracy — the clasatibn
error reaches only 0.55% discriminating the imaggians
of classes C — B and 3.05% of classes A — B, réispbc
Discrimination ability between classes A and C ierse
with an error of 11.71%; the both classes appeaiiasi with
the RNFL texture, although one is probably influsshdy
progression of the disease. As well, the classifioaerrors
were probably caused by the clusters overlappirtgerfea-
ture space, because a strong separating hyperipédween
the particular classes does not exist.

The three-state supervised classifier was testéunwi
the diagnostically important area in the fundus-esrim-
age of patient with glaucoma. The classificatiosules were

compared with OCT measurements showing a relativel

good correlation between the RNFL changes. Thisltres
suggests the possibility of RNFL thickness mapiogord-
ing to the disease progression in further research.
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