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ABSTRACT

Gaussian Mixture Models (GMMs) have been the dominant
technique used for modeling in speaker recognition systems.
Traditionally, the GMMs are trained using the Expectation
Maximization (EM) algorithm and a large set of training
samples. However, the convergence of the EM algorithm to
a global maximum is conditioned on proper parameter ini-
tialization, a large enough training sample set, and several
iterations over this training set. In this work, a Sample Iter-
ative Likelihood Maximization (SILM) algorithm based on
a stochastic descent gradient method is proposed. Simula-
tion results showed that our algorithm can attain high log-
likelihoods with fewer iterations in comparison to the EM al-
gorithm. A maximum of eight times faster convergence rate
can be achieved in comparison with the EM algorithm.

1. INTRODUCTION

Speaker recognition systems are an important part of biomet-
ric systems due to the easy deployment and being less inva-
sive compared to other systems. Speaker recognition is the
process of automatically recognizing who is speaking based
on information provided by speech signals. The main tech-
nique is to find a set of features that best represents a specific
speaker voice. Speaker recognition systems can be catego-
rized depending on their tasks in speaker identification (SID)
and speaker verification (SV) systems. SID systems assign
an input utterance from an unknown speaker to one of the
predefined known speaker models in the system. Conversely,
SV systems are employed to validate whether the speaker is
who he or she claims to be. In this work, we will focus on
SV systems, although the work can also be extended to SID
systems.

Speaker recognition framework can roughly be divided in
two phases independent of the task; enrollment and classifi-
cation. In the enrollment phase, a set of features are extracted
from the speech and then used to create the Gaussian Mixture
Model (GMM) for each speaker in the database. The Expec-
tation Maximization (EM) algorithm [1] is used to estimate
the parameters of the GMMs. In the classification phase, the
likelihoods of the speaker models for a sequence of test fea-
tures from an unknown speaker is computed. Based on the
likelihoods obtained, the system makes a decision, i.e., ac-
cepted/rejected or identified.

For some time now, the GMMs have been the dominant
modeling technique in speaker recognition systems with the
EM algorithm as the base for the estimation of the param-
eters. Other techniques like Gibbs sampling and the meth-
ods based on singular value decomposition have been used
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for the estimation of the parameters [2]. Additionally, dis-
criminative GMM modeling techniques have also been pro-
posed [3, 4], aiming to enhance the specific characteristics
of the speaker in the modeling process. Furthermore, other
discriminative modeling techniques like support vector ma-
chines (SVM) [5] and neural networks [6] are combined with
the GMMs as a post-processing stage in order to improve the
performance of the system.

While the EM algorithm is a well established model-
ing technique in speaker recognition, the algorithm requires
a large sample set, several iterations and a specific initial-
ization to achieve convergence. The EM algorithm yields
a monotonically increasing sequence of likelihoods as the
number of iterations increases, implying that the algorithm
converges to a stationary point in the likelihood function
but does not guarantee that the global maximum will be
achieved [7]. Several methods have been proposed to tackle
the convergence problem to local maximums. Among these
methods, we must emphasize the algorithms that replace or
enhance parts of the EM [8] and the ones that accelerate the
convergence rate of the EM [9].

This paper aims at developing a competitive algorithm
against the EM algorithm in terms of convergence rate and
reliability (i.e., high likelihood values at convergence). Sim-
ulation results showed that our proposed algorithm can attain
higher log-likelihoods with fewer iterations in comparison
to the EM algorithm even with random initialization of the
parameters.

2. SPEAKER VERIFICATION FRAMEWORK
2.1 Design Phase

In text-independent speaker verification systems, speaker
GMMs have become the dominant approach over the last
years [1]. Most of the actual verification systems are based
on the GMMs or in combination with other classifiers.
GMMs can be defined as

K
pxld) = Y wiN (x|, Cr), (1)
k=1

i.e., a weighted sum of Gaussian distributions N (x; |, C),
where (; is the mean vector, C; is the covariance ma-
trix and wy is the weight of the k-th Gaussian distribution.
The GMM can also be defined by a set of parameters, i.e.,
A = {wk, Wk, Ck}le. In this work, we will use GMMs with
diagonal covariance matrices



where {07 ,}7_, is the variance of the k-th Gaussian distri-
bution at the d-th dimension.

In SV systems, two models are defined: the impos-
tor model and the target model. The impostor model also
known as the Universal Background Model (UBM) [10] is
first trained using the EM algorithm and a pool of speak-
ers different from the speaker we would verify. Then, the
speaker model is derived from adapting the mean vectors of
the UBM using Maximum a Posteriori (MAP) [11] and their
own set of features.

2.2 Classification Phase

In the classification phase, the extracted features from a
speaker test utterance {x,}thl are compared against the
speaker GMM stored in the database. The likelihood of a
given speaker model A for the input utterance is computed as

follows
T

L(x|A) =} logp(x|A). 3)
=1

Specifically, SV is a statistical hypothesis test between two
hypothesis [12]. The two hypothesis are the target and the
impostor model trained in the enrollment phase, and each
trial consists of a speaker test utterance and a claimed iden-
tity. From each trial, a log-likelihood ratio is computed and
a score O is determined as

accept
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where A denotes the hypothesis to accept an utterance
{x}L, as being produced by the target speaker model. A4
denotes the hypothesis to reject an utterance {xt},Tzl as be-
ing produced by the target speaker and 7 is the threshold that
minimizes the expected cost of errors. The greater the score
obtained, the more likely that the trial is the target speaker.

3. EM ALGORITHM

As mentioned before, the EM algorithm attempts to model
the speaker (i.e., determine the underlying pdf of the speaker
features) by an iterative maximum likelihood estimation of
the parameters of the GMMs. Table 1 describes the EM al-
gorithm consisting of two steps: the Expectation E-step and
the Maximization M-step.
The EM algorithm is highly dependent on the initialization
procedure; hence the starting positions of the mixture com-
ponents can determine the convergence rate of the algorithm.
A comparison between a random initialization and an ini-
tial selection of mixture components (i.e., the mean vectors)
close to the speaker pdf shows that the highest likelihood and
faster convergence rate was achieved when the mean vectors
of the mixtures were initially selected [7]. The initialization
algorithm applied in this work consists of K mixture compo-
nents with weights {wk}f:l =1/K.

The mean vectors of each mixture component were
initialized using clustering techniques (e.g., vector quan-
tization [13] or K-means [14]) and the covariance ma-

trix {Cy }5_, was set to the global covariance of the database.
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Using the entire training database, the EM iterates until con-
vergence of the likelihood function is attained.

Table 1: EM Algorithm.

E-STEP
1. Using the training database {x}L ;.
Compute the total likelihood LL,
K
LL, =Y WkN(x,|[.lk,Ck), t=1,...,T.
k=1
2. Normalize the likelihood.
wiN (x| e, C)
LL, '
k=1,....,K; t=1,...,T.
3. Compute the sum of weights, 1y,
T
We=Y ks k=1,2,... K.
=1
4. Compute the sum of means, fI;
k Wk ) I TRERET

=1
5. Compute the sum of covariances, X,

T .2
Xt Nkt .
Zk:Zi B k=1,2,...,K.
=

Compute 1, =

M-STEP
1. Compute the new parameter values
for each GMM component.

Wy
Wi = AT
Hie = Hy-
Ck:Zk_y']?-

4. SAMPLE ITERATIVE LIKELIHOOD
MAXIMIZATION ALGORITHM

The Sample Iterative Likelihood Maximization algorithm
(SILM) is based on the fact that the negative of the log-
likelihood function defined in (3) is convex in its parame-
ters. In order to optimize the parameters, we use a stochas-
tic gradient descent method. The principle is to take steps
toward the negative of the gradient to achieve a global mini-
mum [15]. An objective function can be represented as

He(xt):f(th)a (6)

where f(x;,0) is a defined function for the input parameter
x at time ¢ and is differentiable with respect to the parame-
ter 6. We can define an iterative updating function for the
parameter 6 as

6" = 6" — pVH,, (7

where p is a step toward the negative of the gradient of the
function VH (6;) defined as

dHy(x;)
20,

VHy = ®)

As mentioned, the SILM algorithm uses the same prin-
ciple as stochastic gradient descent methods, holding as an



objective function the log-likelihood of training feature sam-
ples, and as parameters the mean vectors, weights and co-
variance matrices of the GMM. Moreover, we must denote
that the SILM algorithm computes sample-wise operations,
contrary to the EM algorithm that performs operations us-
ing the whole database. As an example of the algorithm, we
use the mean vector of a GMM component as optimization
parameter. Substituting (3) in (7) and (8), we attain

W =p = pVLy (x[A), ©)
(10)
where
AL (x,|A)
Vi (k) = =5 (11

_ wiN (x; [uge, C)
lec(zl wiN (xz|“kvck)

(o —ug) .
(12)

Table 2 describes the SILM algorithm. For simplicity,
the algorithm was divided in three parts: definition of the
step size, computation of the likelihood, and the updating of
parameters. In step 1, we define a decreasing step size as a
function of the number of iterations. The number of sample
iterations (N) is set by the user. The training sample features
{x}L, were randomly selected.

Step 2 includes the required operations to compute a single
or individual likelihood component and the total likelihood.
Finally, step 3 shows the GMM parameters updating as in (7).

The initialization of the mean vector {, covariance ma-
trices Cy, and weights wy can be done using random initial-
ization of all the parameters or clustering algorithms as the
EM algorithm. Moreover, the SILM algorithm as a step de-
scent method requires defining an initial step size (p), and
step sizes for the parameters: mean (), covariance matrices
(B) and weights (). The step sizes for the different param-
eters of the GMM are directly proportional to the gradient
attained. After determining the step sizes, we can iteratively
estimate the parameters of the speaker GMM. An extra re-
quirement is to define a threshold (€), in order to avoid that
the weights of the GMMs becoming negative.

The SILM parametrization as a stochastic method aims
at avoiding local maxima that may occur with the EM al-
gorithm. Therefore, the algorithm can achieve higher log-
likelihood and convergence rate for a given number of itera-
tions.

Note that in the limit when the step size “p” of the SILM
tends to zero, the SILM and the EM algorithm will fulfill a
similar convergence criterion, so the parameters of the GMM
will achieve a stable state at convergence for both algorithms.
In general, the stable state for the parameters of the SILM is
defined as

6" = 0" — pVH,,
1 _ ot (1 L
o+ — 9 (1 N) VHy,

t— N (13)

~0
GH—I _ et

5908

Table 2: SILM Algorithm.

1. Step Size Definition
Define a decreasing step size.
Py =P (1 . #)
2.Likelihood Computation
Using the training database {x}._.
a. Select one feature vector {x; }.
b. Compute the likelihood
for each individual mixture L;.
Ly = wiN (x|, Coo),
and the weighted or total likelihood

K K
L=y L= L wiN (x| e, Cy.).-

3. Parameter_Updatin_g
a. Compute the step sizes for means,
covariance matrices and weights.

p,uk = (X~pi—f.
L

pr, =B-pr

P, =V PL-

b. Update means, covariance matrices,
and weights.

C = (1—px,)Ci+ps, (4 — )
e = (1= Py, )t + Pu, 1.

1 K
W = max § €, Wr+ Py, Lk_%ZLk
k=1

5. EXPERIMENTAL SETUP

The experiments were conducted using the female speakers
from the 2005 NIST-SRE “one two-channel (4-wire) conver-
sation” corpus [16]. Each speech file consists of approxi-
mately five minutes one-side telephone conversion. After re-
moving silences at the beginning and end, each speech file
was segmented into frames of 25 ms length with an over-
lap of 10 ms. Each frame was pre-emphasized and Ham-
ming windowed. Then, 13th-order MFCCs are obtained and
warped [17] with a 3 seconds Gaussian window. Afterwards,
deltas, double deltas and delta Log-Energy were computed,
yielding to 40 dimension feature space. Finally, a frame re-
moval algorithm based on the most energetic frame was ap-
plied to select the features from the silence and noise. Then,
we train 64, 128, 256 and 512-mixtures UBMs using 150
speech files from the female speakers in the training set. A
common clustering (i.e., K-means) initialization is done for
the EM and the SILM algorithm. The initial SILM parame-
ters for the experiments were set as follows: initial step size
p, =0.02, ¢ =0.5, 8 =0.05 and y = .0001.

6. EXPERIMENTAL RESULTS

The results are presented in terms of log-likelihood compar-
isons since both algorithms maximize the likelihood function
and experimental evaluation of the performance in speaker
recognition systems showed, that similar performances can
be achieved in terms of error probability. Moreover, we as-
sume convergence of the algorithm, when the log-likelihood
function achieves a stable state.



Figure 1 shows the log-likelihood as a function of the
number of exponential operations for 64, 128, 256 and 512-
mixture UBM with clustering initialization for both algo-
rithms (initialization operations are not shown). We can
observe that with fewer operations or iterations, the SILM
achieves convergence faster and attains higher log-likelihood
than the EM algorithm. Although the difference in con-
vergence rate between the SILM and the EM algorithm de-
creases as the number of mixture components increases, the
SILM maintains higher likelihood and convergence rate. Ta-
ble 3 presents a summary of the results obtained by compar-
ing the EM and the SILM algorithms. The first column ad-
dresses the number of the mixture components. The second
column indicates the log-likelihood values where we consid-
ered convergence is achieved. The third and fourth column
show the number of exponential operations required to attain
the previous log-likelihood values for the EM and the SILM
algorithms, respectively. Finally, the fifth column illustrates
the convergence speed for the SILM algorithm in compari-
son to the EM. We can observe that as the number of mix-
ture components increases, the convergence rate of the EM
algorithm increases. The reason is that a large number of pa-
rameters and a proper initialization can improve the fitting of
the model to the features. As mentioned, the initialization of
the EM algorithm plays a big roll in the convergence rate and
log-likelihood values at convergence. Conversely, the SILM
algorithm depends in minor way on the initialization of the
parameters.
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Figure 1: Comparison of the convergence rate and log-

likelihood between the EM and the SILM for different num-
ber of mixture components with clustering initialization.

Table 3: Convergence of the log-likelihood as a function of
operations when clustering initialization is used.

No. Log- EM SILM speed
Mixtures | likelihood | Operations | Operations

64 5276 | 63.3x10° | 7.3x10° 8.6

128 252,19 | 59.5x10° | 12.8 x10° | 4.64

256 -51.73 543 x 100 | 22.1x10° | 2.45

512 -51.22 41.2x10° | 27.9x10° | 1.47

599

Figure 2 and 3 present a comparison between the SILM
algorithm with random initialization of the parameters and
the EM algorithm with clustering initialization for 64 and
512 mixture UBM, respectively. We can observe that even
with this type of initialization we are able to achieve faster
convergence rate than the EM algorithm and in the case of
64-mixture GMM, a higher log-likelihood is achieved. The
shift of the EM log-likelihood values is due to the fact that
no log-likelihood is obtained during initialization of the EM
algorithm. The initialization operations for the EM are pro-
portional to applying K-means to obtain the mean vector of
each mixture component.
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Figure 2: Convergence rate comparison between the EM

with clustering initialization and the SILM with random ini-
tialization for 64 mixture components.
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Figure 3: Convergence rate comparison between the EM
with clustering initialization and the SILM with random ini-
tialization for 512 mixture components.

Although the algorithm presented in this work was used
to train the UBM of a SV system, the use of the SILM is
not limited to this application. Our intention was to highlight
the use of this algorithm with the most time consuming and
complex model in speaker recognition. Real time speaker
recognition systems and identification systems can also ben-
efit from the use of the SILM algorithm to estimate their pa-



rameters.

7. CONCLUSIONS

In this paper, we show an algorithm capable to overcome
the convergence limitations of the EM algorithm. The al-
gorithm is based on a step descent method, it achieves faster
convergence with fewer number of operations in comparison
to the EM algorithm even with random initialization. We
also achieve for some cases higher reliability at convergence.
This is an ongoing research and requires further study in the
sense of using other optimization techniques and increase the
robustness of the step size.
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