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ABSTRACT

We apply the asymmetric restricted isometry property
(ARIP) to recent results of Cai, Wang, and Xu and formulate
a two-parameter family of sufficient conditions for exact k-
sparse signal recovery via £!-minimization. We translate the
sufficient conditions into the phase transition framework and
apply bounds on the ARIP constants to define lower bounds
on the phase transition. By selecting the parameters wisely,
we determine sufficient conditions whose phase transition
curves improve upon those already in the literature.

1. INTRODUCTION

In the simplest setting of compressed sensing (CS), one seeks
the sparsest solution to an underdetermined system of linear
equations. A predominant tool in the analysis of sparse signal
recovery is the Restricted Isometry Property (RIP) of Candes
and Tao [9]. Since the introduction of CS and the related
increase in work on the analysis of recovery algorithms, the
field has produced numerous RIP statements which serve as
sufficient conditions for exact sparse recovery. A framework
for comparison of CS results was set forth by Donoho et al.
[11, 12, for example] and adapted to the RIP [1]. In this ar-
ticle, we apply the asymmetric restricted isometry property
(ARIP) to recent work by Cai, Wang and Xu [6]. In do-
ing so, and by resisting the temptation to force small support
sizes on the ARIP [3], we present the sufficient condition for
¢'-minimization which is provably satisfied by the largest re-
gion of Gaussian matrices. We demonstrate this by applying
bounds on the ARIP constants [1] and comparing the region
obtained from this analysis against the regions of previous
results.

1.1 The Noiseless CS Problem and the RIP

We consider signals of dimension N and assume the target
signal has no more than k-nonzero coefficients. Our target
signal class is denoted x (k) = {x € RV : ||x||o < k} where || -
|lo counts the nonzero entries. From y = Ax, we are provided
n measurements of the target signal x from a linear encoder,
A of size n x N. Finally, the signal x is recovered from (y,A)
using one of many CS decoders.

The natural decoder is a combinatorial search for the
sparsest solution:

ey

min ||z]lo subjectto y=Az.
ZERN

If the encoder A provides distinct measurements for any two
k-sparse vectors (for any x,x’ € y"(k), Ax # Ax), the so-
lution to (1) is unique. It is now known that other more
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tractable decoders can identify this unique solution under ap-
propriate additional conditions on the encoder/decoder pair.
Candes and Tao introduced the RIP [9] which permits a de-
coder analysis independent from the encoder and provides
one form of these appropriate additional conditions for iden-
tifying the unique solution to (1). To admit the largest class
of encoders which might satisfy an RIP condition, we adopt
the ARIP formulation [1].

Definition 1.1 (RIP [9] and ARIP [1]). For an n x N ma-
trix A, the ARIP constants L(k,n,N) and U (k,n,N) are the
smallest nonnegative numbers which satisfy

(1= L(k,n,N))|lx]l3 < [|Ax[|3 < (1+U (k,n, N))[x[I7 (@)

forall x € N (k).
The standard (symmetric) RIP constant R(k,n,N) is then
defined by
R(k,n,N) := max{L(k,n,N),U(k,n,N)}. 3)
Remark 1.2. We refer to the first entry of the RIP constant as
the support size.

There are several decoders with sufficient conditions for
exact k-sparse recovery based on the RIP. Greedy algorithm
decoders with such guarantees include CoSaMP [15], Itera-
tive Hard Thresholding [4], and Subspace Pursuit [10]. Here
we focus on ¢!-minimization:

“

min ||z|[; subjectto y=Az.
ZERN

The ¢'-decoder has been studied quite extensively in the
CS setting and sufficient conditions for exact k-sparse recov-
ery have been derived using multiple methods of analysis.
In this article, we focus on the ¢! decoder and the sufficient
conditions based on an RIP analysis.

Remark 1.3. For simplicity, we focus exclusively on the ideal
case of exact sparsity and exact measurements. Standard ex-
tensions of the RIP analysis to signals which are not exactly
k-sparse or measurements corrupted by noise yield similar
results. The phase transition curves in this article are upper
bounds on the curves obtained for noisy measurements or
compressible signals.

1.2 An Overview of RIP Conditions for ¢!-minimization

The RIP was first used in CS by Candes and Tao [9] to estab-
lish a sufficient condition for recovery of a k-sparse vector.
The first method of proof used the RIP to establish a separat-
ing hyperplane on the boundary of the feasible region for (4).
In [8], Candes, Romberg, and Tao used a primal argument to
establish a sufficient condition for successful recovery. The
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general approach to their proof was to show that the error be-
tween the solution to (4) and the target signal x must be zero
if the encoder A satisfied the RIP condition

u" (k,n,N) := ~R(3k,n,N) + =R(4k,n,N) < 1.  (5)
The major step in the proof was to partition the index set
in such a way that one could apply an RIP analysis. This
technique was then further developed by Foucart and Lai in
[14] where an ARIP analysis and an alternative partitioning
of the index set resulted in the sufficient condition

14+v2 (14+U(2k,n,N)
4 —L(2k,n,N)

w(k,n,N) := — 1) <1. (6

These theoretical results! are worst case guarantees
rather than the average case performance observed in empir-
ical testing. However, such theoretical guarantees are at the
heart of the excitement surrounding CS and the fast decoders
which (approximately) solve (1). We do not discuss average
case performance nor empirical investigation, but we show
the evolution of the theoretical guarantees based on the RIP.

1.3 The Phase Transition Framework

The results in Sec. 1.2 can be compared qualitatively in a va-
riety of ways. The general approach in the literature is to
simply formulate the results, using various inequalities, into
statements involving a common support size of the RIP con-
stants. Alternatively, using bounds on the ARIP constants,
one may write the condition in a form that permits direct
quantitative comparison via the phase transition framework
advocated by Donoho. To obtain such a format, we consider
the CS problem in the setting where the problem parameters
(k,n,N) grow in a coordinated fashion.

Definition 1.4 (Proportional-Growth Asymptotic). A se-
quence of problem sizes (k,n,N) is Said to grow proportion-
ally if, for (8,p) € [0, 1]2 L5 §and £ N P asn— .

In the asymptotic setting, the extensive existing knowl-
edge regarding singular values of Gaussian matrices was cou-
pled with a large deviation analysis to obtain rather accurate?
bounds on the ARIP constants [1]. We say that the matrix A
is drawn from the Gaussian ensemble when the entries of A
are taken i.i.d. from the normal distribution with mean zero
and variance n~!

Theorem 1.5 (Blanchard, Cartis, Tanner [1]). Fix & > 0. Un-
der the proportional-growth asymptotic, Definition 1.4, sam-
ple each n x N matrix A from the Gaussian ensemble. Let
Z(6,p) and % (8,p) be defined as in [1, Thm. 1]. Define
Z(8,p) =max{Z(8,p), % (8,p)}. Then asn— o,

Prob[L(k,n,N) < Z(8,p)+€] —1, (1)
Prob[U (k,n,N) < % (8,p) + €] — 1, 8)
and Prob[R(k,n,N) < Z(8,p)+¢€] — 1. )

Sufficient RIP conditions, such as those mentioned in
Sec. 1.2 establish when the solution to (4) will coincide with

lEquations (5) and (6) are representatives of the many RIP conditions in
the literature.

2These bounds are within twice the ARIP constants observed during ex-
tensive empirical testing [1].

the solution to (1). We formalize this event as Strong ¢! /¢°
Equivalence.

Definition 1.6 (Strong /¢'/¢° Equivalence). The event
StrongEquiv(A, L") denotes the following property of an n x
N matrix A: for every k-sparse vector x, € -minimization
(4) exactly recovers x from the corresponding measurements
y=Ax.

Under the proportional-growth asymptotic there is a
strictly positive function ps(8;¢') = ps(8) > 0 defining a
region of the (§, p) phase space which ensures successful re-
covery of every k-sparse vector x € xN(k), [9, 11, 12]. This
function, ps(8), is called the Strong phase transition func-
tion.

Definition 1.7 (Region of Strong Equivalence). Consider the
proportional-growth asymptotic with parameters (8,p) €
(0,1) x (0,1/2). Draw the corresponding n x N matrices
A from the Gaussian ensemble and fix € > 0. Suppose that
we are given a function ps(8) with the property that, when-
ever 0 < p < (1—¢€)ps(8), Prob(StrongEquiv(A,¢') — 1 as
n — oo. We say that ps(8) bounds a region of strong equiva-
lence.

That is, if (8,p) falls in the region of the phase space
below the curve pg(0), then the probability of successfully
k-sparse recovery via ¢'-minimization converges to 1 when
measurements are taken from the Gaussian ensemble. In this
paper we apply the ARIP to a relatively recent proof tech-
nique of Cai, Wang, and Xu [6]. Then, by formulating the
sufficient conditions in the phase transition framework we
show that this technique yields results with larger regions of
strong equivalence than previously known RIP conditions.

2. SUFFICIENT ARIP CONDITIONS FOR
STRONG ¢! /(° EQUIVALENCE

In a recent series of papers [5, 6, 7], Cai et al. have modi-
fied the existing RIP analysis to form an additional family of
sufficient conditions on A which imply StrongEquiv(A,¢").
While their motivation was the reduction of the support size
of the RIP constants, our motivation is to attempt to close the
gap between the regions of strong equivalence implied by the
RIP and by more geometric, algorithm-specific analyses such
as the polytope analysis of Donoho and Tanner [11, 13]. To
do so, we define a function which based on an ARIP analysis
following the techniques in [6].

Definition 2.1 (CWX ARIP Function). For o, 3 > 0 define
a CWX ARIP Function by

((1+ @)k n,N) + ——=Q(at, B),  (10)

VB

Mo'g(k,n,N) ==L

where

(e f) = L((1 +a+[3)k,n,N);U((1 +a+B)k,n,N)'

Definition 2.1 defines a family of CWX ARIP functions
parameterized by &, . For &, B € tNT with 20 < B < 4ax,

Hog
of every k-sparse signal.

k,n,N) provides a sufficient condition for ¢! recover
(k,n,N) p y
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Theorem 2.2. Suppose a.,3 € %N* with 2o < B < 4o and
that A is an n X N matrix with ARIP constants satisfying
,u&t”é“(k,n,N) < 1. Then we have StrongEquiv(A,l") for k-
sparse vectors.

The proof precisely follows the analysis of Cai et al. in
[6] with the application of the ARIP that delivers the result
in the form stated in 2.2. The general format of the proofs
obtained by Cai et al. follow the original proofs of Candes
et al. [8]. The index set {1,...,N} is partitioned into sub-
sets of a certain size which determine the support size of the
ARIP constants. In [6], the Shifting Inequality is the main
innovation permitting a flexible partitioning of the index set.

Lemma 2.3 (Shifting Inequality [6]). Suppose q,r € NT with
r<qg<3r.lf

C12Cy > 2 Coig >0,
Then |
C; < Cj. (11
i r+q i3

In our version of the proof, we employ the following im-
plication of the ARIP constants which can be found in [2,
Lem. 15(iv)]. For an index set I C {1,...,
cardinality of the set.

Lemma 2.4. Let I.J C {1,...,N} with INJ =0 and |I| +
|[J/| = m. Let A be an n x N matrix with ARIP constants

L(m,n,N),U(m,n,N). Then for any h € RV,

L(m,n,N)+U(m,n,N)

|<Ah1,Ahj>| < >

| arll2][ s |2

Proof of Theorem 2.2. Let x € "N (k), y = Ax, and £ be the
solution to (4). Define & = |% — x| and Ty = supp(x). Arrange
the elements of / in decreasing order on the complement, 7,
and partition the complement into subsets

Toc =hu (UJZZT/‘)

where |Ti| = ak and |T}| = Bk for j > 2. Now, for j > 2,

further partition each set into the first @k largest entries and

the last (8 — a )k entries:
Tj=TpUTp; j=2

with |T}1| = ak and Tj» = (B — a)k. For notational brevity,
let Toy = To U Ty, T2 = T;. Finally, hT/. is the set of coeffi-
cients in / indexed by 7;. By design, ak < (B — o)k < 3ak
so we may apply Lem. 2.3 to these sets. For j > 2,

: 1
lnjla={ Y 0| <—=
! ; V/Bk

1
*\/ﬁ (||hT(j,

Y i+ Y h

ZET/ 12 lETll

ol ) - (12)

So, using (12), we can write

Y il < —— z(nhn ol + )

j>2 j>2

1
h
j;l\l 7l = N

From [8], we use ||iiz¢|[1 < [|hzy]|1, the Cauchy-Schwarz in-
equality, and the fact that ||z, [|> < ||Ag,, ||2 to see that

lhgll.  (13)

Y il < \/BHhTmHz (14)

j>2
Finally, we use this partitioning and (14) to apply the
ARIP constants. Since Ax = Ax, Ah = 0 and so

0= |<Ah’AhTm>‘ = HAhTOI Hg + z:2<Ath’AhTm>
Jj=>

> [1 = L((1+ a)k,n,N)] ||z, |I5

*Q(Oé,ﬁ)HhTolllz_Zthlelz
j=
> [1=L((1+a)k,n,N)] ||y, 1 — (et ﬁ)\/EHhTmHz

1 —p's (k,n, N | [y, |13, (15)

where the sequence of inequalities relies on Def. 1.1,
Lem. 2.4, and (14). Thus, if /,Lcwx(k n,N) < 1, (15) implies

that hz;, = 0 and therefore £ = x. ]

Theorem 2.2 provides a family of sufficient condition for
exact k-sparse signal recovery in the form of the CWX ARIP
functions [.LCW"(k n,N). This family of functions leads to two

natural questlons First, when is it possible to satisfy the con-
dition g (k,n,N) < 1 and for which values of a,f will

this condition be easiest to satisfy? Second, do any of the

functions [.L””E (k,n,N) lead to regions of strong equivalence

which are larger than the regions of strong equivalence de-
termined by the either u’(k,n,N) or p/!(k,n,N) defined,
respectively, in (5) and (6).

To answer these question, it will be necessary to define
a function which bounds the regions of strong equivalence.
We apply the bounds from Thm. 1.5.

Definition 2.5 (CWX Region of StrongEquiv(A,¢')). Define
ZL(8,(1+a+B)p)+%(5,(1+a+PB)p)

HE(8.p):= 28, (1+0)p) +

2B
and p§"™*(8; o, B) as the solution to ,u””(ﬁ p)=

Theorem 2.6. Consider the proportional growth asymp-
totic with parameters (8,p) € (0,1) x (0,1/2). Draw the
corresponding n x N matrices A from the Gaussian en-
semble. Fix € > 0. If p < (1 —¢€)p$™(0;0e,B), then
Prob(StrongEquiv(A,£')) — 1 as n — oo,

Therefore the function p{"™*(8;a,B) bounds a region of
strong equivalence for ' -minimization.

Proof. By [2, Lem. 16], with overwhelming probability on
the draw of A from the Gaussian ensemble /.Lcwx(k n,N) <
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,LL&WE(S, (I+¢€)p) and ugwg(p, 0) is strictly increasing in p.
Thus, by [2, Lem. 17], if p < (1 —¢&)p$"™*(0;,B), then
u&wg(& (14+€)p) < 1. Therefore, with overwhelming prob-

ability the hypotheses of Thm. 2.2 are satisfied and we have
StrongEquiv(A, ¢") for all k-sparse vectors. O

In the next section, we present a heuristic argument
which leads to a choice of a,f that provides the largest
region of strong equivalence while permitting every prob-
lem instance (k,n,N). Then we compare the regions of
strong equivalence for matrices drawn from the Gaussian
ensemble and associated to each of the three conditions
ug's (e,n, Ny, uI! (k,n, N), u"" (k,n,N) < 1.

3. PUSHING THE RIP REGION OF STRONG
EQUIVALENCE

As discussed in [3], the general approach in the literature is to
use the parameters o, 8 in 15" (k,n,N) to obtain a statement
with RIP constants with the smallest possible support size.
However, this does not produce the largest region of strong
equivalence. Here we attempt to intelligently choose o and
B to obtain the largest region of strong equivalence. Because
no single choice of o, B results in a function p$**(3; o, B)
which is largest for all values of 8, a heuristic argument for
the choice of o, 8 is reasonable. First, we fix the problem in-
stance (k,n,N) and observe that /.L&Wg (k,n,N) consists of two
terms, 7
L((1+ a)k,n,N) and

1

3B

The first term depends only on alpha and the second term

has the important weight 1/(2+/B). Since the RIP constants
are nondecreasing, we balance increasing the support sizes of

the RIP constants with impact of the weight 1/(21/B). As a
has no effect on the weight and only plays the role of altering
the support size of the ARIP constants, we take the mini-
mum value of ¢ in order to keep the support sizes of the RIP
constants as small as possible. Therefore, we must choose
o = f3/4 according to the hypotheses of Thm. 2.2. Then, we
can rewrite the sufficient condition as /J,EW" (k,n,N) < 1 for

(L(14+a+B)k,n,N)+U((1+a+ B)k,n,N)).

MG (ko N) = S (o, N) =

L((1+ 3B)k,n,N) +U((1+ 3B)k,n,N) .

2B

Now, the condition is dependent only on 3 and one must
balance the growth rates of the ARIP constants as the sup-
port size grows against the benefits of increasing 8 to force a
smaller weight on the second part of the condition with larger
support sizes. This is highly dependent on the matrix ensem-
ble from which A is drawn. Define p$**(8; 8) as the solution
to ug™(8,p) = 1.

Choosing 8 € 4N* ensures that uéwx(k,n,N) applies to
every problem instance (k,n,N). It is possible that selecting
B ¢ 4N may result in larger regions of Strong Equivalence.
For the Gaussian ensemble, such changes have a minimal
effect on the magnitude of the phase transition curve. From
4NT, B = 4 defines the phase transition function with the
largest magnitude: pg"*(8;4) is the red curve in Fig. 1.

L((I—O—iﬁ)k,n,N)-i-

Figure 1: Regions of Strong Equivalence: The region be-
low the curve ps(8) is a region of StrongEquiv(A,¢') for
A drawn from the Gaussian ensemble; (p§"*(0;4), red),

(2 (8), black), (p}' (8), blue), (ps(8), green).

Figure 1 also displays three other regions of strong equiv-
alence defined by RIP results from the literature. First,
ps"(8), displayed as the green curve in Fig. 1, bounds the
region of strong equivalence determined by Candes et al. [8]
and stated here as (5). The blue curve is defined by p‘Sf 1(5)
which is the region of strong equivalence associated with
Foucart and Lai’s RIP condition (6). Previously, the high-
est phase transition curves were represented by the following
condition from [3] which are a generalization of (5); Let

C112(8,12p) + % (8,11p)

bt .
pur(8,p): 0 :

(16)

and define p%(8) as the solution to u”(8,p) = 1. Then
p%(8) bounds the region of strong equivalence and is dis-
played as the black curve in Fig. 1. Figure 1 gives a straight-
forward means of quantitatively stating that the method of
analysis in [6] yields larger regions of strong equivalence.
This figure also displays the advances over time and the im-
provements obtained by incorporating new partitioning tech-
niques and the ARIP in the analysis.

The choice of B =4 is not arbitrary. By plotting other re-
gions of strong equivalence, it is clear that p$**(6;4) bounds
the largest region of strong equivalence for § € 4N*. If we
are willing to let B vary continuously, it is possible to push
the strong phase transition curve slightly higher. However,
no other choice of 8 will result in a major improvement
for Gaussian matrices. When & — 0, the improvement ap-
proaches 2%, but even for § > 0.1 the improvement is never
even 1% (or 5.7 x 107°). Figure 2 provides the improvement
ratio for 3 alternative choices of 3, which further demon-
strates that no single choice of 8 is optimal.

Another interesting use of the phase transition curve is
the extraction of a constant of proportionality for the re-
quired number of measurements implied by a given suffi-
cient condition. Namely, by taking the inverse of a curve
that bounds a region of strong equivalence, we can deter-
mine a constant C = (ps(n/N)) " such that if n > Ck then the
problem instance (k,n,N) falls in the region of strong equiv-
alence for Gaussian matrices. Thus the curves (ps(8)) ™! de-
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Figure 2: Improvement Ratios for Selected 3: The ratio
P (8,B)/ps"*(8;4) for (B = 3, red), (B = 3.25, blue),
(B = 3.5, black).

scribe the smallest constant of proportionality for which a
particular theorem guarantees strong equivalence with over-
whelming probability on the draw of A. Figure 3 shows
the inverse of the red curve in Fig. 1 defined by p**(5:4).
In [9], Candes and Tao developed the first RIP based suffi-
cient condition and determined that for Gaussian matrices,
if n/N = 1/2, then n > 2174k was a sufficient number of
measurements for StrongEquiv(A, (') with A from the Gaus-
sian ensemble. Since that seminal paper, the introduction
of new proof techniques, the ARIP analysis, and the im-
proved bounds of Thm. 1.5 have dramatically reduced this
constant of proportionality. Using pg"*(8:4), if n/N =1/2,
then n > 198k is a sufficient number of measurements to en-
sure the problem instance falls in the region of strong equiv-
alence. However, there is still a gap from the necessary and
sufficient conditions determined by Donoho and Tanner with
a geometric algorithm specific analysis of the ¢! decoder.
Their polytope analysis tells us that if n/N = 1/2, the ac-
tual required number of measurements is n > 11k to guar-
antee StrongEquiv(A,£') with overwhelming probability on
the draw of A from the Gaussian ensemble.
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