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ABSTRACT
Filterbank-based multicarrier modulations as OFDM with off-
set QAM (OFDM/OQAM) can provide a time-frequency well-
localized pulse shape. We can exploit this property to reduce the
intersymbol interference (ISI) and interchannel interference (ICI)
when the transmission is over time and frequency dispersive chan-
nels. Several criteria can satisfy this goal. In this paper, we intro-
duce a new criterion to optimize the OFDM/OQAM pulse shape.
The proposed criterion is flexible and leads to a fast design opti-
mization procedure. In addition the pulse shape obtained is per-
fectly orthogonal.

1. INTRODUCTION

Contrary to OFDM, the OFDM/OQAM modulation does not re-
quire a cyclic prefix and offers the possibility to use a pulse shape
more appropriate than the rectangular window. Indeed, in [1], it is
pointed out that in presence of a doubly dispersive channel, the op-
timal pulse shape for multicarrier modulation schemes is obtained
when the transmitted signal is localized in time and frequency with
a time-frequency scale identical to the channel one.

Thus, for different channel characterizations the optimal pulse
shape is different and a trade-off between time localization (TL) and
frequency localization (FL) for the pulse shape should be taken into
account to reduce the intersymbol and interchannel interferences
(ISI) and (ICI). Hence the significance of the time-frequency local-
ization (TFL) of the pulse shape. The aim of the Isotropic Orthog-
onal Transform Algorithm (IOTA) introduced in [1] was to provide
a nearly optimal OFDM/OQAM prototype function, with regard to
TFL, that gave an equal weight to TL and FL. Based on the Gaus-
sian function and IOTA, another set of prototype functions, named
extended Gaussian function (EGFs), is presented in [2] that permits
a balance between time and frequency localization. The effect of
this weighting , that depends upon the spreading factor of the Gaus-
sian function, is analyzed in [3] in the case of either a a frequency
or a time dispersive channel.

However, in practice, the OFDM/OQAM system has to be dig-
itally implemented. Otherwise said the prototype filter has to be
truncated and digitized. Then the orthogonality and TFL features
may be altered as illustrated in [2] and [4] for cosine modulated fil-
ter banks (CMFBs) and OFDM/OQAM transmultiplexers (TMUX),
respectively. Indeed, the results presented in [4] clearly show that
for the TFL criterion, especially for short length prototypes, it is
better to directly optimize the prototype filter in discrete time. In
[5], the authors compare three different citeria, one being the maxi-
mization of the TFL, for their own transmultiplexer system.

However, in [4] and [5], the optimization of TFL being related
to the minimization of the product of the second order moments
in time and frequency, contrary to the approach based on the
EGF, there is no possible trade-off between TL and FL. In this
paper, we introduce a new design criterion where a weighted
sum of the second order moments in time and frequency has to
be minimized. Therefore, the resulting prototype filters are not
restricted to a particular class of functions. The proposed design
method takes advantage of the fast design algorithm introduced in

[6]. The resulting prototype filters are perfectly orthogonal thus
leading to a perfect reconstruction (PR) OFDM/OQAM TMUX,
or, equivalently to a PR CMFB. A transformation is introduced,
relating the spreading parameter of the Gaussian function with the
weight used in this new criterion, thus allowing a fair comparison
with the EGFs. We also analyze the performances of the resulting
OFDM/OQAM systems in the case of transmission over frequency
or time dispersive channels.

The paper is organized as follows. Section 2 presents the
OFDM/OQAM system. The TFL measures and their optimization
are discussed in Section 3. In Section 4, we present the proposed
criterion. The design method based on this criterion is presented in
Section 5. Finally, we end by simulation results in Section 6.

2. OFDM/OQAM SYSTEM

The baseband OFDM/OQAM signal in continuous time domain can
be written as follows:

s(t) =
M−1

∑
m=0

+∞

∑
n=−∞

am,n fm,n(t), (1)

where am,n are the real data symbols, M is the number of carriers
(even in general) and fm,n(t) is defined by:

fm,n(t) = f (t −nτ0)e j2πmF0te jφm,n , (2)

with φm,n =φ0+
π
2 (m+n) mod π where φ0 can be arbitrary chosen.

F0 and τ0 are the subcarrier spacing and time offset between two
real symbols, respectively, such that F0 = 1

T0
= 1

2τ0
, where T0 is

the symbol duration. f (t) is the prototype function, generally it
is symmetrical and real valued. The discrete-time version of (1) is
obtained by choosing the sampling frequency Fs such that Fs =MF0
or Ts =

T0
M , i.e., corresponding to critical sampling. Taking into

account the causality of the discrete prototype filter f [k] we obtain:

s[k] =
M−1

∑
m=0

+∞

∑
n=−∞

am,n f [k−nN]e j 2π
M m(k− D

2 )e jφm,n , (3)

with N = M
2 and D = L− 1 = Length( f )− 1. s[k] can be viewed

as the output of a M-channel synthesis filter bank [4]. The recon-
structed symbols âm,n can be obtained at the receiver using the real-
valued inner product. This results in the OFDM/OQAM TMUX
represented in Fig. 1. The filter in each subchannel is a frequency
shifted version of the prototype filter:

fm[k] = f [k]e j 2π
M m(k− D−N

2 ), (4)

hm[k] = h[k]e j 2π
M m(k− D+N

2 ), h[k] = f ∗[L−1− k]. (5)

The delay β introduced between the transmitter and the receiver and
the reconstruction delay, α , are related to the filter prototype length:
L−1 = αN −β with 0 ≤ β ≤ N −1 [4].
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Figure 1: OFDM/OQAM transmultiplexer

3. TIME-FREQUENCY LOCALIZATION

For a continuous-time function, or a discrete-time sequence, there
are different time-frequency localization (TFL) measures to quan-
tify their dispersion in time and frequency. Whatever the measure
being used, concentrating the energy around the function, or se-
quence, center increases the TFL.

3.1 TFL measures
The localization in the time-frequency plane of a real-valued proto-
type function p(t) may be defined as in [1] by:

ξc(p) =
1

4π
√

µ(2)
t µ(2)

f

, (6)

where µ(2)
t and µ(2)

f are the second order moments in time and
frequency, respectively. The TFL measure ξc in (6), is such that
0 ≤ ξc ≤ 1. The maximum localization (ξc = 1) is obtained for the
Gaussian function, but this function is not orthogonal, so we do not
use it for transmission. In discrete-time domain, we can find several
definitions of the TFL measure [7], [8] and [9]. We adopt the one
introduced by [8].Thus, for a real sequence p[k], we note ξmod(p)
its modified TFL. ξmod(p) also is defined by a scaling of the second
order moments in time and frequency, i.e. by:

ξmod(p) =
1√

4m2M2
, (7)

where m2 and M2 are the second order moments in time and fre-
quency, respectively [8]:

M2 =
1

∥p∥2

+∞

∑
k=−∞

(p[k]− p[k−1])2 (8)

m2 =
1

4∥p∥2

+∞

∑
k=−∞

(
k− 1

2
−T (p)

)2
(p[k]+ p[k−1])2 (9)

with

T (p) =

+∞
∑

k=−∞
(k−1/2)(p[k]+ p[k−1])2

+∞
∑

k=−∞
(p[k]+ p[k−1])2

(10)

For these moments defined as in [8], we always have 0 ≤
ξmod(p)≤ 1 . In this case, ξmod(p) = 1 if and only if p̂(ν) the Four-
rier transform of p[k] is given by: p̂(ν) = C|cosπν |K with C ∈ C
and K >− 1

2 . In general, this function is not orthogonal.
In order to get for the discrete-time case localization measures be-
ing comparable to the ones obtained for the continuous case, we
normalize the second order moments as follows:

m
(N)
2 =

2
M2 m2, M

(N)
2 =

M2

2
M2, (11)

This normalization, that takes into account the discretization in
time, is similar to the one used in [2] for CMFBs. In the rest of
this paper, for the sake of concision, we use the terms ξ , m2 and
M2 instead of ξmod , m(N)

2 and M
(N)
2 , respectively. Note that, based

on [4], for the parameter values of the system tested in this paper, it
can be seen that continuous-time and discrete time measures lead to
numerical results very closed from each other.

3.2 TFL optimization
As shown in [1], a double orthogonalization of the Gaussian func-
tion, gα (t) = (2α)1/4e−παt2

, leads for ν0 = τ0 = 1√
2

and α = 1
to the IOTA prototype function. With a measure ξc = 0.977, IOTA
is nearly optimal in time and frequency with equality between its
time and frequency second order moments. Starting from IOTA, a
simple way to weight TL and FL is to use the EGFs given by [2]:

zα (t) = 1
2

∞

∑
k=0

dk,α

[
gα

(
t +

k
ν0

)
+gα

(
t − k

ν0

)]
.

∞

∑
l=0

dl,1/α cos
(

2πl
t

τ0

)
, (12)

where dk,α and dl,1/α are real-valued coefficients. The orthog-
onality of this function is guaranteed for αm ≤ α ≤ 1/αm with
αm ∼= 0.264. The balance between TL and FL is weighted by the
α parameter. Increasing α means increasing TL and vice-versa for
FL.

A simple discretization at the critical sampling rate leads to a
discrete prototype filter of the EGF type. For an OFDM/OQAM
TMUX with M carriers, this prototype filter is given by:

p[n] =
1

Mν0
zα

(
n

Mν0

)
. (13)

Truncating it to a finite length, with α in the range [αm,1/αm]
and for sufficiently large L/M ratios, the EGF-based prototype filter
nearly retains two properties of the continuous-time EGF, i.e. is
nearly orthogonal and ξ (α)≈ ξ ( 1

α ).
In order, with a finite length prototype filter, to get a perfect

orthogonality and a nearly optimal TFL, i.e. maximizing (7), one
can use the method proposed in [6]. However, in [6], differently
from what we can get with the EGFs, no tradeoff is offered between
TL and FL.

4. PROPOSED CRITERION

Instead of minimizing the product of the two second order moments
(i.e. maximizing ξ ), the idea now is to weight the two (normalized)
second order moments of the prototype filter p[k],k = 0, . . . ,L−1
by a parameter λ . Then the objective function to minimize can be
written as

fλ (p) = λm2 +(1−λ )M2, (14)
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Figure 2: Characteristics of optimized prototype for: (a) λ = 0.2
and (b) λ = 0.8, for L = 2M = 256.

fλ depends on L coefficients (p[i]){i=0,...,L−1} and the expression of
m2 and M2 used for this optimization are the ones given by (9) and
(8), respectively. In the rest of this paper, we designate by weighted
time-frequency localization filter (WTFL) the filter obtained by the
optimization of (14) for given λ . The value of the λ parameter is
chosen according to the dispersion features in time and frequency
of the channel. If the channel is more selective in frequency than
in time, we choose 0 ≤ λ ≤ 0.5 in (14) in order to favor the fre-
quency localization. But if the channel is more selective in time
than in frequency we choose 0.5 ≤ λ ≤ 1 in order to favor the time
localization. We consider the case where the filter length is L = kM,
where k is a positive integer. Using the design method presented
in Section 5, we get, for k = 2 and λ = 0.2 or 0.8, the optimized
prototype filters having the time and frequency features depicted in
Fig. 2. It is clear from these figures that the filter prototype which
corresponds to λ = 0.2 is more localized in frequency domain than
the one which corresponds to λ = 0.8 and vice versa in time do-
main. Thus, α and λ parameters have a similar role, i.e. they offer
a trade-off between TL and FL. Using the Gaussian function, i.e.
the mother function for the EGFs, we propose to examine how α
and λ parameters are related together. To achieve this goal, let us
compute the λ value that minimizes

fλ (gα ) =
λ

4πα
+(1−λ )

α
4π

. (15)

Then, we can easily derive a transformation between the α and λ
scales:

f ′λ (gα ) = 0 ⇒ λ =
α2

1+α2 (16)

To ensure the validity of this transformation, let us look how
the TL and FL properties of the EGF can be interpreted with the α
and λ parameters.
If the prototype length is sufficient, the EGFs are nearly orthog-
onal and their TFL measure is such that ξ (α) = ξ ( 1

α ) [2] with
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Figure 3: Second order moments comparison.
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m2(α) = M2(
1
α ). Note that in (16), the substitution of α by 1/α

leads to λ (α) = 1−λ ( 1
α ), which is similar to a permutation of the

two weighting factors in (14). Fig. 3 shows the variations with λ
of the second order moments for the EGF prototype filter and for
the one optimized with (14). In this analysis, the values of λ are
restricted to the interval [0.1,0.9], otherwise said to a range of α
values where the EGFs can be considered for L = 4M, as nearly or-
thogonal. We can see from this figure that for λ = 0.5 the localiza-
tion is the same in time and frequency and for 0 ≤ λ ≤ 0.5 the fre-
quency localization is better than the time one and reciprocally for
0.5 ≤ λ ≤ 1. The value of the optimized objective function fλ for
each λ is represented in Fig. 4, the corresponding value for the EGF
is also represented. We can see that fλ (p) has a global extremum
for λ = 0.5 and it is almost symmetric about the axis λ = 0.5. This
figure also shows that for each λ we have fλ (p∗)< fλ (EGF) where
p∗ is the optimized filter. Fig. 5 shows the TFL measure ξ of the
optimized filter and EGF. Here, we can see that ξλ (p∗)> ξλ (EGF).

5. DESIGN METHOD

To structurally obtain an orthogonal prototype filter that ensures the
PR of the transmitted symbols, it is recommended to write the pro-
totype filter as a group of two-channel lattice where each lattice
corresponds to two polyphase components.

5.1 Angular parametrization method
Let us recall that each FIR prototype filter P(z) of length kM can
be represented by its M polyphase components of type 1 as follows
P(z) = ∑M−1

l=0 z−lGl(zM), where Gl(z) = ∑n p(l + nM)z−n. Then,
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Figure 5: Time-frequency localization comparison.
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Figure 7: Relative MSE degradation for OFDM/OQAM with 128
carriers and SNR = 21.76 dB.

the orthogonality conditions for OFDM/OQAM can be written as
follows, for 0 ≤ l ≤ N −1 [4]:

Gl(z)G̃l(z)+Gl+N(z)G̃l+N(z) =
1
M

, (17)

where G̃l(z) = G∗
l (z

−1). Note that we are interested to the case of
even N and linear-phase real-valued prototype filter. Therefore, the
following relations are verified [10]:

G̃l(z) = zk−1G2N−1−l(z) (18)

G̃l+N(z) = zk−1GN−1−l(z)

thus we have only N unrelated polyphase components. The com-
plementary power relation in (17) implies that each pair of the N
unrelated polyphase components {Gl(z),Gl+N(z)} can be obtained
by a cascade matrix of delays and rotations, for 0 ≤ l ≤ N/2− 1
[11]:

[Gl(z) Gl+N(z)] =
1
M

[cosθ l
0 sinθ l

0]
k−1

∏
j=0

Λ(z)Θ(θ l
i ), (19)

where Λ(z) and Θ(θ l
i ) are the delay and rotation matrix, respec-

tively, and defined by :

Λ(z) =
[

1 0
0 z−1

]
,Θ(θ l

i ) =

[
cosθ l

i sinθ l
i

sinθ l
i −cosθ l

i

]
(20)

Using the lattice representation and the phase linearity of the pro-
totype filter, we can reduce the number of parameters to optimize
from kN coefficients to kN/2.

5.2 Compact representation method

In [6] the authors propose to express the angular parameters θ l
i as

a function of l for each i ∈ {0,1, . . . ,k− 1}. Indeed, based on ob-
servation it was shown, for the TFL criterion, that optimal solutions
were characterized by a regular behavior of the l 7−→ θ l

i functions
which allows us to interpolate theses functions as follows:

θ l
i =

d

∑
n=0

xn
i Tn(4ϕM(l)−1) (21)

where ϕM(l) = l+1
M+1 and Tn is the set of Chebyshev polynomials

of degree ≤ d. If, instead, the used interpolation basis is the Tay-
lor one, Tn is substituted by ϕM(l)n in (21). A good interpolation
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Figure 8: ICI+ISI comparison in PLC channel, with L=4M and M =
128.

function can be obtained for small values of d thanks to the regu-
larity property of θ l

i . The straightforward advantage is that instead
of optimizing kN/2 parameters, it is sufficient to optimize kd pa-
rameters with d << N/2. To see if this method can be applied for
the proposed criterion, we must verify that minimizing (14) with
respect to the angular parameters θ l

i also leads to smooth functions
l 7−→ θ l

i for all i ∈ {0,1, . . . ,k− 1}. Fig. 6 illustrates that indeed
the functions θ l

i are smooth which validates the compact represen-
tation method for the fλ criterion. That means similar results can
be obtained by choosing a small value of d, e.g. d = 5. Then, the
number of coefficients to optimize is 5k instead of 32k.

6. SIMULATION RESULTS

To compare the EGF and the optimized prototype filter, we place
ourselves, at first, in the case where there is only a constant
frequency offset, denoted ∆ f , at the receiver side plus an additive
white Gaussian noise. For such a frequency dispersive channel,
time localization is the most critical parameter, therefore we choose
to compare short length prototype filters (k = 1). Fig. 7 shows
the mean square error (MSE) with respect to the case when no
frequency offset is present, i.e. the relative MSE is null when
∆ f = 0 even in the presence of an AWGN. The comparison is made
between the optimized filter for λ = 0.8, and L = M versus the
EGF with same length and α = 2 according to (16).

Another simulation has been run to compare the total interfer-
ence level (ICI+ISI) in the presence of a multipath channel. The
selected channel is the 4−tap channel used in [12] for power line
communications. The bandwidth used in this simulation is 15 MHz
and the signal to noise ratio (SNR) is 15 dB. The interference is
computed as in [13] assuming a zero forcing one tap equalization.
The channel is frequency selective, thus better result is obtained
if the filter prototype is frequency selective. So, the parameter λ
is chosen to be less than 0.5, we have chosen here λ = 0.2 and
L = 4M. The corresponding value of α is 0.5. Fig. 8 shows that
the optimized filter gives us a total interference power less than the
EGF one.

7. CONCLUSION

A new TFL criterion based on a weighting of the second order mo-
ments in time and frequency has been proposed. This leads to a new
family of orthogonal pulse shapes for OFDM/OQAM. A transfor-
mation has also been introduced in order to compare this new class
of prototype filters to the one based on EGFs. The results show that
some improvements can be obtained either for frequency or for time
dispersive channels.
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