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ABSTRACT 
The main purpose of this work is to develop an analysis tool 
to evaluate differences in brain activation during specific 
tasks in neurologically disabled patients versus a non-
impaired control group. The database will include a set of 
fRMI images obtained by a Siemens Avanto 1.5 T machine. 
The main idea of the authors has been to develop a system 
combining processed fRMI images from SPM software with 
an image processing algorithm to obtain neuronal activation 
regions, measure perimeters and areas and perform com-
parisons between tests, in order to quantitatively evaluate the 
initial situation of the patient as well as to monitor his/her 
evolution. Future work will extend the use of the application 
for a wider range of neurological disorders, and integrate 
EEG studies as a complementary tool for diagnosis. 
 
Index Terms— Image Processing, fMRI, SPM 

1. INTRODUCTION 

The neuropsychological disorders most frequent in children 
are dyslexia and Attention Deficit & Hyperactivity Disorder 
(ADHD), pathologies which are usually chronic and persis-
tent. According to studies carried out in the USA and EU, the 
percentage of child dyslexia occurrence is 5-17% [1] and 3 to 
5% for ADHD with symptoms starting before seven years of age 
[2]. We now have several non-invasive neuro-imaging diag-
nose techniques such as Positron Emission Tomography 
(PET)[3], magneto encephalography (MEG)[4] and Func-
tional Magnetic Resonance (fMRI) [5] [6], which have con-
tributed to understanding these pathologies in the functional 
and morphological fields. These techniques differ on a spatial 
and temporal resolution degree, fMRI being the one with the 
best spatial resolution. 

fMRI has had a profound impact on neuroscience since 
the initial activation of the visual cortex by Belliveau in 
1991. fMRI signal production is due to the paramagnetic 
effect of oxyhemoglobin. The brain’s focal activation results 
in an increase in flow, oxygen distribution and brain volume. 
The relation between oxyhemoglobin and deoxyhemoglobin 
in venous blood increases and, as a result, the blood and tis-
sues have less susceptibility, which causes a higher signal 
measurable on T2 and T2* images. This is known as blood 
oxygen level-dependent (BOLD).  

The main aim of this work is to aid specialists in their 
daily practice by providing them with a tool to objectively 

evaluate neurological diseases using fMRI signal-processing 
algorithms. This being the main aim, a number of secondary 
objectives could also be achieved: 
• To create a complete database with records of fMRI 

images. 
• To develop an image processing algorithm for the ade-

quate segmentation of images for the calculation of ex-
ternal and internal contours of the area of interest. 

• To calculate the numerical value of objective parame-
ters that enable analysis of differences in brain activa-
tion during reading tasks in neurologically disabled 
children as opposed to non-impaired controls. A report 
will be prepared including quantitative parameters, im-
ages, external and internal contours and clinical pa-
rameters. In addition, a figure will clearly represent all 
the parameters, as well as the normal regions and those 
of interest. 

This paper is divided into the following principal sections: 
Section 2 describes the used methodology, section 3 presents 
the proposed system, section 4 describes the results obtained, 
and section 5 presents the authors’ conclusions and future 
work.  

2. DATABASE 

In order to develop and test the implemented algorithms, a 
database containing functional and structural magnetic reso-
nance images was created. The acquisition device was a 
Siemens Magnetom Avanto 1.5 Tesla property of Osatek 
Ltd. at Galdakao Hospital, controlled by radiologists Alberto 
Cabrera and Ibone Saralegui. Two different types of images 
were acquired for each subject: anatomical or structural im-
ages and functional images. The scanner configuration pa-
rameters for structural images were TR =1900ms (Repetition 
Time), TE =2.95ms (Echo Time) and SL =1mm (Slice 
Thickness). Image resolution was 256x256x176 pixels with a 
voxel size of 1x0.977x0.977. For functional images the pa-
rameter values were TR=3000ms, TE=50ms, and SL=3mm. 
Image resolution was 64x64x29 pixels with voxel size 
3x3x4.05. All the data collected from the scanner was coded 
in Siemens Magnetom proprietary format. 

12 subjects between 9 and 11 years old were scanned for 
the purpose of the study. Two of them were male subjects and 
ten female. The control group is formed by eleven of these 
subjects. The twelfth subject was not included, being classi-
fied as a case with undiagnosed but probable dyslexia. The 

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 1335



12 subjects performed 5 different task paradigms involving 
the use of language understanding and generation areas 
(Broca and Wernicke, or Brodmann’s 44-45 and 22 respec-
tively), where differences between control and patient groups 
are expected. A total of 75 tests were carried out, 12 of which 
had 110 complete brain volume scans and the remaining 63 
had 90 volumes each, making a total of 6990 volumes 
scanned for the database.  

3. TECHNICAL METHODS 

The main objective of this study is to extract the relevant 
information from the fMRI slices and to take a number of 
measurements, in order to check similarities and differences 
between the neural activation areas belonging to control 
group subjects and those belonging to dyslexic patients. We 
have used the following techniques to process the data, 
which can be grouped into two sets: SPM8 fMRI analysis 
techniques [7] and image processing methods. 
 
2.1 Rigid Body registration 
This technique is used in order to reduce the effect of subject 
movement during the acquisition of the scans and to model 
different head positions of the same subject. It uses general-
ized interpolation, where the images are first transformed 
before applying the local convolution. Generalized interpola-
tion methods model an image as a linear combination of ba-
sis functions with local support, typically B-splines or o-
Moms (maximal-order interpolation of minimal support) 
basis functions. 
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Rigid-body transformations consist of only rotations and 
translations, and leave given arrangements unchanged. They 
are a subset of the more general affine transformations. For 
each point (x1; x2; x3) in an image, an affine mapping can be 
defined into the co-ordinates of another space (y1; y2; y3), 
applying a simple matrix multiplication (y=Mx). 
 
2.2 Spatial Normalization using basis functions 
When a study involves group analysis or inter-subject com-
parison, it is necessary to register the images of different sub-
jects into roughly the same co-ordinate system, where the co-
ordinate system is defined by a template image (or series of 
images). The method only uses up to a few hundred parame-
ters, so can only model global brain shape. It works by esti-
mating the optimum coefficients for a set of bases, by mini-
mizing the sum of squared differences between the template 
and source image, while simultaneously maximizing the 
smoothness of the transformation using a maximum a poste-
riori (MAP) approach. 
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The algorithm starts with a 12 DF affine registration, fol-
lowed by 3 translations, 3 rotations, 3 zooms and 3 shears. 
Afterwards, it fits overall shape and size and refines the reg-
istration with non-linear deformations. The algorithm simul-
taneously minimizes mean-squared difference (Gaussian 
likelihood) and squared distance between parameters and 
their expected values (regularisation with Gaussian prior). 

2.3 Segmentation 
MR images are segmented into different tissue classes using 
a modified Gaussian Mixture Model. By knowing the prior 
spatial probability of each voxel being grey matter, white 
matter or cerebro-spinal fluid, it is possible to obtain a more 
robust classification. Intensity non-uniformity correction is 
also used, which makes the method more applicable to im-
ages corrupted by smooth intensity variations.  

The first step is to estimate the cluster parameters, then 
assign belonging probabilities and finally estimate the modu-
lation function. The variance of each cluster (c) is computed: 
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Bayes rule is used to assign the probability of each voxel 
belonging to each cluster: 
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To reduce the number of parameters describing an inten-
sity modulation field, it is modelled by a linear combination 
of low frequency discrete cosine transform (DCT) basis func-
tions. The modulation field U can be computed from the es-
timated coefficients (Q) and the basis functions (D1 and D2): 
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2.4 General Linear Model 
A general linear model explains the response variable y in 
terms of a linear combination of the explanatory variables 
plus an error term:  
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The model implemented in the algorithm has a normally dis-
tributed and non-spherical error. 
 
2.5 Statistical Inference 
Hypotheses are tested using mainly one-way analysis of vari-
ance (ANOVA), one or two sample t tests and F tests de-
pending on the type of analysis. Contrast vectors are estab-
lished to make inquiries regarding the different regressors 
modelled on the design matrix in the general linear model. 
Test statistic t is computed:  
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The proposed algorithm uses ROI (Region of Interest) -based 
processing techniques to isolate the areas showing neural 
activity. The main characteristic of this method is that it util-
ises a binary mask to filter or perform operations on the de-
sired pixels of an image. The binary mask is the same size as 
the image to be processed with pixels that define the ROI set 
to 1 and all other pixels set to 0. Several methods can be used 
for mask generation. 

In this study we chose colour segmentation filtering, due 
to the characteristics of the input image, composed of two 
different types of information: a grayscale background show-
ing the anatomical structure of the brain and skull of the sub-
ject and a red scale overlay containing the intensities and 
special extent of the neuronal activation. The implemented 
filter examines the values in the RGB matrix of the image 
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and extracts the pixels that fit in the range of colour values 
representing the cortical activity. The new image generated 
with these pixels form the mask that defines the ROI for our 
specific purpose. In order to identify and measure the differ-
ent clusters of activated pixels we have used a contour detec-
tion technique for binary images. In our study case, this sim-
ple but effective method presents us with advantages over 
more complex ones, such as active contour models due to the 
characteristics of the input image. The possibility of using 
ROI segmentation to separate the areas of interest in a binary 
image allows the use of edge detection based on pixel con-
nectivity, resulting in a faster and more precise classification 
of the detected clusters. Connected components are found 
and labelled by scanning the entire image searching for pix-
els with a value different from zero (which represents the 
background); all area and perimeter values for each cluster 
are also computed.  

4. SYSTEM DESIGN 

The system can be classified into two blocks, as shown in 
Fig.1. The first block uses SPM8 fMRI analysis routines to 
process and extract the information contained in the func-
tional BOLD (Brain Oxygenation Level Dependent) images. 
The second block implements the cluster detection, feature 
measurement and results presentation. 
 

 
Figure 1 – fMRI analysis system block diagram. 

 
The sequence of the process is as follows: 

• Format conversion (1) from Siemens Magnetom format 
to Nifti-1 image format to be suitable for SPM8 proc-
essing. For this purpose we have chosen the MRICon-
vert tool due to its effectiveness and compatibility with 
Siemens proprietary format. Image header information 
is extracted and recoded according to the Nifti-1 stan-
dard.  

• Reorientation (2) of the functional and structural im-
ages to equalize the origins of the coordinate systems. 
This step sets the images in the correct position with 
reference to the coordinate axis to match the position of 
the templates used in the spatial normalization steps. 
Odd results will appear after normalization if this cor-
rection is not included.  

• Realignment (3) of the functional images to correct 
subject motion artefact during acquisition. Movements 
of the subject’s head inside the scanner can alter the 
BOLD images inducing a change in the signal, which 
can be modelled using rigid body registration. The 
transformation uses a less square approach and consists 
of 3 rotations and 3 translations around and along the 
orthogonal axis [8]. 

• Co-registration (4) of structural and functional images. 
The within-subject registration method used here is 
based on work by Collignon et al [9] and it uses a rigid 
body model. The image that is assumed to remain sta-
tionary (sometimes known as the target or template im-
age) is the mean of the realigned functional BOLD im-
ages, while the source image (structural T1 image) is 
moved to match it.  

• Tissue segmentation (5) separates gray matter, white 
matter and cerebro-spinal fluid into different Nifti im-
ages for subsequent analysis. This step also implements 
bias-correction of the structural image and computes 
the deformation field parameters for spatial normaliza-
tion [10]. The tissue probability maps used for segmen-
tation were generated taking into account the age and 
gender of each study subject with the Template-o-Matic 
toolbox for SPM5 [11].  

• Spatial normalization (6): the algorithm works by mi-
nimizing the sum of squares difference between the 
image which is to be normalized, and a linear combi-
nation of one or more template images. The primary 
use is for stereotactic normalization to facilitate inter-
subject averaging and precise characterization of func-
tional anatomy [12]. Smoothing using a Gaussian Ker-
nel is also applied to the resulting normalized images 
in order to suppress possible noise signals. 

• Model specification (7) according to the general linear 
model, which comprises the specification of the GLM 
design matrix, fMRI data files and filtering, and esti-
mation of GLM parameters using traditional approach-
es.  

• Statistical inference (8) and interrogation of results 
using contrast vectors to produce Statistical Parametric 
Maps (SPMs) and Posterior Probability Maps (PPMs). 
First (within-subject) and second (inter-subject) level 
analyses are tested using F tests and one or two sample 
t tests. 

• Overlay pre-processing (9): the images showing struc-
tural anatomy with neural activation overlay are saved 
and arranged in mosaics to prepare them for feature ex-
traction. 

• ROI segmentation (10): neuronal activation results are 
extracted from the image applying a binary mask. The 
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mask is generated filtering the RGB matrix values with 
a predefined threshold. 

• Cluster detection (11): the contour recognition algo-
rithm labels and detects groups of activated voxels. The 
image is scanned to detect contiguous pixels and assign 
numeric labels to connected areas.   

• Feature measurement (12): perimeter and area are com-
puted for each cluster.  

• GUI (13): measures can be accessed through an inter-
face which allows the user to select the cluster to be 
analysed. Different subject or group results can be ex-
amined to find differences in areas of interest. 

5. RESULTS 

Intermediate and final results obtained for a healthy subject 
are shown in the figures below. The paradigm used was de-
signed to activate the language areas of the subject, and it is 
composed of 90 complete volume scans, with a stimulus 
onset every 20 scans. Stimulus duration is of 10 scans. Pa-
rameters are corrected using FWE correction with a thresh-
old value equal to p<0.05. Fig. 2 shows a T1 (structural) and 
a functional BOLD image in the initial state (1), after reori-
entation, realignment and co-registration (2) and after the 
normalization and functional smoothing step (3). The fourth 
section in the figure shows the SPM (statistical parametrical 
map) computed and an overlay of the neuronal activation 
areas on the normalised T1 image. 

 

 
Figure 2 – fMRI analysis algorithm results. 

Rigid body transformation parameters are shown in Fig. 3. 
Translation values are shown in mm along the x, y, and z 
axis during the acquisition of the different scanned volumes. 
At the same time, the subject’s rotation movement around 
the axis is calculated and measured in degrees to model the 
artifact.  
The analysis block begins with the generation of a 6x6 mo-
saic, choosing the specified slice separation on the horizon-
tal plane which contains the areas relevant for the study of 
language-related neurological disorders, as shown in Fig.4.  

 
Figure 3 – Realignment parameters. 

Fig. 5 shows the binary mask resulting from the segmenta-
tion of the regions of interest using the RGB threshold tech-
nique. 

 
Figure 4 – Pre-processed slices. 

 
The area and perimeter of each cluster is measured, and re-
sults are shown on an interactive user interface which allows 
the specialist to compare different studies for the same sub-
ject and extract conclusions on inferences between control 
and patient groups. An example of the latter is shown in 
Fig.6. 
 

 
Figure 5 – ROI segmentation mask. 
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Figure 6 – Measures and comparison results. 

 
Control group activations are shown on the left-hand side of 
the GUI, while the neural activity of a subject extracted from 
the patient group is situated on the right. The algorithm cal-
culates the difference between areas and perimeters of the 
selected clusters belonging to the different maps and shows 
the results, as well as the respective parameter values of each 
object of the study.  

6. DISCUSSIONS AND CONCLUSSIONS 

Most of the success of the proposed system is due to SPM8 
as a helpful tool for identifying activation regions. Being 
both control and patient group formed by young aged sub-
jects the difficulty of obtaining clear and significant activa-
tions increases. Therefore the selection of an adequate proc-
essing tool is a key factor. Binary mask ROI segmentation 
results have been successful due to the input images charac-
teristics. Grayscale structural background contrasts clearly 
with coloured activation areas, which makes this method 
preferable, as it is faster and more efficient than other tested 
techniques as Snakes or other active contour algorithms. 

Quantitative parameters for the area and perimeter of the 
region under study have been automated by the algorithm, 
and manual measurement tests have been performed to check 
the validity of the results, with a relative error around 0.05%. 

The possibility of comparison of two images from the 
same subject and different acquisition date will allow the 
specialists to make an objective evaluation of the treatment 
and assess the evolution of the patient. 

Regarding objective fulfilling, regions of interest detec-
tion through fMRI processing has been successfully 
achieved, as well as the calculus of the objective numeric 
values related to the cortical activations.  

In reference to the database objective, one of the future 
tasks to accomplish will be to add new samples that allow the 
validation of individual results and the expansion of the sys-
tem to use it on a wider patient population profile. Finally, it 
would be interesting to integrate the system with EEG studies 
as a complementary tool to increase the amount of informa-
tion about the neurological disorders under investigation. 
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