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ABSTRACT 

In this paper our previously proposed TDCNN simulation 
formulation is rewritten in vector-matrix form and thus a 
matrix condition for the empirical time constraint given in 
[1] is derived. The sinusoidal simulation results for band-
pass filter example are presented. 

1. INTRODUCTION 

In our previous study, we introduced a new simulation me-
thod for time derivative cellular neural networks (TDCNN) 
with first derivatives [1]. The method in [1] uses forward 
Euler approximation for the derivatives on the left hand side, 
and backward Euler approximation for the derivatives on the 
right hand side of the TDCNN equation and computes the 
state of each cell by using convolution sums thus provides a 
great speed advantage. 

In this paper, the formulation for the simulation of TDCNN 
used in [1] is given in vector-matrix form which enables the 
derivation of a matrix condition that formally proves the time 
constraint given empirically in [1]. We show that our 
TDCNN simulation method in [1] has the same solution as 

the forward Euler method iff the eigenvalues iλ  of  ˆ
1A  are 

negative. Then we present the numerical simulation results of 
the method given in [1] and forward Euler method, and show 
that the results are consistent. 

2. TIME-DERIVATIVE CELLULAR NEURAL 
NETWORKS (TDCNN) 

Time-derivative CNN (TDCNN) [2] extends the original 
CNN description in [3] by adding derivative connections 
between cells. A time-derivative linear CNN is described by 
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The first two terms on the right hand side of  (1) are the same 
as in the case of original CNN equation, A and B are feed-
back and feed-forward cloning templates, u is input and x 
denotes the state and output of the linear network. qA  and 

qB  are defined as qth derivative feedback and feedforward 

templates, respectively, and r denotes the neighborhood of 
the CNN. It has been shown that by adding first order deriva-
tives of the outputs of the neighboring cells to the original 
CNN equation, bandpass spatiotemporal filters can be real-
ized [2,4]. For these first derivative TDCNNs (1) becomes 
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3. ANALYSIS OF TDCNN SIMULATION 
METHODS 

Equation (2) can be written in vector-matrix form by using 
one of the several packing schemes. Thus for a network size 
of MxN cells, MNx1 size vector-matrix differential equation 
of TDCNN is obtained as 

  
d dˆ ˆˆ
dt dt

= + 1
x x

Ax+Bu A  (3) 

Here  ˆ ˆ
1A,A and B̂  are MNxMN matrices, x  and u  are 

MNx1 vectors that includes all the cell outputs and inputs 
respectively. We can rearrange (3) so that all the derivative 
terms are on the left hand side of the equation 

( ) dˆ ˆ ˆ
dt

− =1
x

I A Ax+Bu .                       (4) 

where I  denotes identity matrix of MNxMN size, which 
yields 

      ( ) ( )1 1d ˆ ˆ ˆ ˆ
dt

− −
= − −1 1

x
I A Ax+ I A Bu .          (5) 

 
Let us now apply Euler’s forward approximation to (5): 
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Rearranging (6) yields 

 ( ) ( ) ( ) ( ) ( )1
1 s
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In [1] we have used forward Euler difference for the deriva-
tive on the left hand side and the backward Euler difference 
for the derivatives on the right hand side of (3), resulting in 
the difference equation: 
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Equation (9) can be rearranged as  
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If the absolute values of eigenvalues of matrix 

( ) ( )1ˆ ˆ−
− −1 1I A A  are less than 1, the powers of this ma-

trix approaches zero as the iteration continues. Consequently 
the last term in (10) decreases and we obtain the same equa-
tion as (7). In [1] we pointed out that the input image is held 
constant for at least 3 iterations for our method to give the 
same results as SIMULINK simulation. This condition cor-
responds to having very small values for 

( ) ( )
31ˆ ˆ− − −  

1 1I A A after three iterations, thus obtain-

ing 
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In other words, the time constraint for the simulation of 
TDCNN given in [1] must be satisfied to ensure that the 

powers of the ( ) ( )1ˆ ˆ−
− −1 1I A A  decrease. 

Let us now examine the eigenvalues of 

( ) ( )1ˆ ˆ−
− −1 1I A A . First we decompose ˆ 1A  as 

                                    1ˆ −
= Λ1 1 1 1A T T                            (12) 

where  idiag( )Λ = λ1  and iλ ’s are the eigenvalues of 

ˆ
1A .  Now we can write 
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Which shows that the eigenvalues of ( ) ( )1ˆ ˆ−
− −1 1I A A  
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4. SIMULATION RESULTS 

 
In this section we present the simulation results for the three 
methods given above.  
 
The input image is spatio-temporal, thus we have time vary-
ing frames of images.  
 
For the simulations we must first evaluate the MNxMN size  
ˆ ˆ

1A,A  and B̂  matrices. Since for a 20x20 TDCNN, the 

size of the matrices would be 400x400, a 4x4 size TDCNN 
example with the templates 
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 is given.  

 
For this example we have: 
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We simulated the spatio-temporal bandpass filter TDCNN 
example given in [2]. Bandpass filter outputs are given for 
forward Euler method and the method in (8) in Fig. 1 and 
Fig. 2 respectively. As can be seen from the figures, the 
simulation results are consistent.  
 

5. CONCLUSION 

 
General 3D continuous-time discrete-space mixed-domain 
spatio-temporal filters can be realized by TDCNNs. In this 
paper it is proven that the method given in [1] and forward 
Euler method has the same solution under the condition that 

the absolute value of eigenvalues of ( ) ( )1ˆ ˆ−
− −1 1I A A  

are less than 1. The necessary and sufficient condition for this 

outcome is that the eigenvalues iλ  of  ˆ
1A  should be nega-

tive. The sinusoidal simulation results of forward Euler me-
thod and proposed method in [1] are consistent with each 
other. 
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Figure 1.  Bandpass filter simulation (for the template values given in [2]) 

of forward Euler method. The passband of the filter is around 

1 / , 8 /x y trad pix rad sω ω= = Ω =  

 
Figure 2.  Bandpass filter simulation (for the template values given in [2]) 

of our previously proposed method [1]. The passband of the filter is 

around 1 / , 8 /x y trad pix rad sω ω= = Ω =  
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