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ABSTRACT
The Problem of non-cooperative narrowband sources loca-
tion is often solved by estimating many parameters, among
them one can cite the angle of arrival (AOA), the time of ar-
rival (TOA) or the frequency of arrival (FOA). To the best of
our knowledge most of the techniques are using separately
estimated location parameters on several stations. Since they
do not take into account that the observed signals on the sta-
tions comes from the same emitters, they are suboptimal.
They lead to ambiguïties especially in multi-emitter context.
Based on the narrowband assumption on the whole sensor
network, composed of the multiple base stations, the pro-
posed method relies on a centralised processing by means
of a stacked observation vector. As we simultaneously treat
all the signals collected in several stations, the correspond-
ing criterion treats all stations together and does not exhibit
ambiguities in presence of multiple emitters. For the sake of
simplicity, we will consider in this paper only two stations.
After having described the implementation of our algorithm,
simulations and Cramér-Rao Bounds illustrate the improve-
ment of our method compared to a classical AOA estimation
based algorithm performed on each station independently.

1. INTRODUCTION

AOA estimation has always been an intensive research
theme. In Radio-communication the problem of geolocation
thanks to an AOA estimation has been especially studied by
the array processing community [1]. As far as we know, less
efforts have been focused on direct non cooperative planar
geolocation. In order to locate an emitter most of the current
“classical” algorithms are estimating parameters that could
be AOA, TOA or FOA using different methods on separated
sensor network [2][3]. Since the emitters location is charac-
terised by at least two parameters, these parameters have then
to be associated for each emitter. Thus, on the one hand such
methods lead to ambiguïties (in presence of muliple emitters)
and on the other hand since the estimations are performed in-
dependently, the technique is suboptimal.

As far as we know less effort has been focused on the
simultaneous estimation of the location parameters, taking
into account that the signals received by all stations belong
to the same emitters. Previous studies [4, 5] provide new in-
sights on the location algorithm by means of a Direct Position
Determining (DPD) in presence of multiple stations. In this
article, focusing on the use of two multiple sensors stations,
we propose a new non-copertaive multiple emitter geoloca-
tion algorithm, on the line-of-sight context, considering that
the narrowband assumption can be performed on the whole
sensor network. Our goal is to highlight the advantages of

using an algorithm performing a simultaneous estimation of
the location parameters by means of an extending stacked
observation vector. In this article a practical implementation
including a second order steepest descent algorithm is pro-
posed. Finally, simulations and Cramer-rao Bounds (CRB)
underline the advantage of our algorithm compared to a clas-
sical method.

2. MODEL OF THE SIGNAL

We focus on the problem of locating multiple emitters on two
stations denoted A and B composed by NA and NB sensors,
respectively. Let xA(t) and xB(t) denote the observation vec-
tors collected on the two stations, and let us consider M nar-
rowband transmitters emitting unkown signals denoted sm(t)
(1≤m≤M). Assuming classically that both stations receive
narrowband signals, that is to say the emitter bandwith of the
emitter times the time delay of propagation accross each base
station is small, leads to

xA(t) =
M

∑
m=1

ρA,ma(αm)sm(t)+nA(t), (1)

xB(t) =
M

∑
m=1

ρB,mb(βm)e− j2π f0τmsm(t− τm)+nB(t), (2)

where a(.) and b(.) are the steering vectors (array responses)
of the stations A and B, without loss of generality, chosen so
as to possess the same norm. αm and βm denote the AOA
of the mth emitter on station A and B, respectively. ρA,m
and ρB,m denote unknown complex parameter standing for
the channel effect. nA(t) and nB(t) are additive gaussian
noises whose covariance matrix are σ2INA

and σ2INB
, re-

spectively, where IN denotes the N×N identity matrix. τm
includes the TDOA of the mth emitter between stations A
and B and the synchronisation time error between both sta-
tions. f0 stands for the carrier frequency.

Let us consider the following stacked observation vector

x(t) =
[

xA(t)
xB(t)

]
, (3)

and the stacked noise vector

n(t) =
[

nA(t)
nB(t)

]
. (4)

Now, we assume the narrowband assumption on the whole
sensor network, that is to say the product emitter bandwith
times time delay of propagation across both base station is

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 676



considered as small. The following expression of xB(t) is
obtained

xB(t) =
M

∑
m=1

ρB,mb(βm)e− j2π f0τmsm(t)+nB(t). (5)

Thus,

x(t) =
M

∑
m=1

umsm(t)+n(t), (6)

where

um =

[
ρA,ma(αm)

ρB,me j2π f0τmb(βm)

]
. (7)

In order to define the following signal to noise ratio

SNR = 10log
(

E[sm(t)sH
m(t)]

σ2

)
, (8)

for the mth source, we will consider the following normal-
ized stacked steering vector :

u(α,β ,ψ,φ) =
1√

1+ψ2

[
a(α)

ψe jφb(β )

]
, (9)

where ψ and φ are unknown deterministic real parameters.
Since a(.) and b(.) have been chosen so as to have an equal
norm, the new stacked steering vector u(.) has a constant
norm. So it leads to

x(t) =
M

∑
m=1

u(αm,βm,ψm,φm)sm(t)+n(t). (10)

And finally a more compact expression is obtained

x(t) =A(ααα,βββ ,ψψψ,φφφ)s(t)+n(t), (11)

where
ααα = [ α1 ... αM ]

T
, (12)

βββ = [ β1 ... βM ]
T
, (13)

ψψψ = [ ψ1 ... ψM ]
T
, (14)

φφφ = [ φ1 ... φM ]
T
, (15)

A(ααα,βββ ,ψψψ,φφφ)= [ u(α1,β1,ψ1,φ1) ... u(αM,βM,ψM,φM) ] ,
(16)

s(t) = [ s1(t) ... sM(t) ]
T
. (17)

According to the equation (11) our goal is to perform the
simultaneous estimation of {(αm,βm),m ∈ [1,M]} and to de-
duce {(xm,ym),m ∈ [1,M]} the location of the emitters.

3. A NEW LOCATION ALGORITHM

Considering the model (11) a MUSIC [6] algorithm approach
is proposed. Let us first denote :

R= E[x(t)xH(t)], (18)

Rs = E[s(t)sH(t)], (19)

we have then

R=A(ααα,βββ ,ψψψ,φφφ)RsA
H(ααα,βββ ,ψψψ,φφφ)+σ

2I, (20)

So we propose to minimize the following criterion :

C(α,β ,ψ,φ) =
uH(α,β ,ψ,φ)ΠΠΠbu(α,β ,ψ,φ)

uH(α,β ,ψ,φ)u(α,β ,ψ,φ)
, (21)

where ΠΠΠb = I−UsUs
H and where the (NA+NB)×M matrix

Us consists of the M eigenvectors of the matrix correspond-
ing to the M largest eigenvalues of R. This would lead to a
4-Dimentionnal search whereas ψ and φ are undesired nui-
sance parameters. But it can be noticed that since

u(α,β ,ψ,φ) =U(α,β )ρρρ(ψ,φ), (22)

where

U(α,β ) =

[
a(αm) 0
0 b(βm)

]
, (23)

ρρρ(ψ,φ) =
1√

1+ψ2

[
1

ψe jφ

]
, (24)

a well known linear algebra result allow us to propose the
following reduced criterion :

C2(α,β )= λmin
{
UH(α,β )ΠΠΠbU(α,β )[UH(α,β )U(α,β )]−1} ,

(25)
where λmin(.) stands for the minimal eigenvalue. For the sake
of computational cost [7] and to avoid the full numerical op-
timisation of the criterion (25) we prefer to compute the fol-
lowing equivalent criteria :

Cr(α,β ) =
|UH(α,β )ΠΠΠbU(α,β )|
|UH(α,β )U(α,β )|

, (26)

where |.| stands for the determinant.
Indeed, as we will see in the section 4 the expression (26)

is well suited to obtain closed-form expresssion for the gradi-
ent and the Hessian requiered in a second order steepest de-
scent algorithm. The optimisation is performed through a 2-
Dimensional search, giving us for each emitter the estimated
location parameter couples

{
(α̂m, β̂m),m ∈ [1,M]

}
. Once

the AOA have been estimated the locations are estimated
thanks to following geometrical relations in the (AB,AC)
plane (where AC is orthonormal to AB ) :{

x = xA + ||AE||cos(α)
y = yA + ||AE||sin(α)

, (27)

where

||AE||= ||AB||
cos(α)− sin(α)

tan(β )

, (28)

and (xA,yA) and (xB,yB) denotes the location of the stations
A and B.

Our extended observation based method appears to be
unambiguous. Indeed, in presence of M emitters, when two
independant MUSIC algorithms are processed on each sta-
tion, M AOA are estimated on both stations leading to M2

possible emitter location. On the contrary the criterion (26)
exhibit directly only M solutions.
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4. PRACTICAL IMPLEMENTATION

The reduced criterion (26) suits well to the use of a second
order steepest descent algorithm. Denoting ΘΘΘ = [ α β ]

T

the parameter vector, at each step i we obtain an iterative
estimate

ΘΘΘi+1 = ΘΘΘi−λH−1(ΘΘΘi)∇∇∇(ΘΘΘi), (29)

where λ stands for the step size, H(ΘΘΘi) and ∇∇∇(ΘΘΘi) are re-
spectively the Hessian and the gradient of the criterion (26)
at the point ΘΘΘi. Well known formulas provide [1]:

[∇∇∇(ΘΘΘ)]k =
|M|

|UH(ΘΘΘ)U(ΘΘΘ)|
Tr
[
M−1Mk

]
, (30)

[H(ΘΘΘ)]kl =
|M|

|UH(ΘΘΘ)U(ΘΘΘ)|
(
Tr
[
M−1Ml

]
Tr
[
M−1Mk

]
,

−Tr
[
M−1MkM

−1Ml
]

+Tr
[
M−1Mkl

])
(31)

with
M=UH(ΘΘΘ)ΠΠΠbU(ΘΘΘ), (32)

Mk =
∂M

∂Θk
, (33)

Mkl =
∂ 2M

∂Θk∂Θl
, (34)

where 1≤ k, l ≤ 2 and Θk denotes the kth component of ΘΘΘ.
In order to initialize this second order steepest descent

algorithm we propose to take the result of two independant
MUSIC algorithm processed on each station independently,
providing us M2 possibilities. The M most appropriate cou-
ples are those providing the M lowest value of (26).

5. CRAMER-RAO BOUNDS

5.1 Cramer-Rao bounds on AOA for the stacked obser-
vations
We focus on unknown deterministic signals. Let us note the
following unknown parameter vector, where the term σ2 is
discarded :

ξξξ =
[
sT αααT βββ

T
ψψψT φφφ

T
]
, (35)

where ψψψ = [ ψ1 ... ψM ]
T , φφφ = [ φ1 ... φM ]

T , s is
the source signal vector s =

[
sT (1) ... sT (T )

]T and
T the number of samples. We can show by means of [8]
and [9] that the CRB of the stacked model (11), where
ηηη =

[
αααT βββ

T
ψψψT φφφ

T
]
, writes :

CRB−1
s (ηηη) =

2
σ2

T

∑
t=1

Re[SH(t)DH
ΠΠΠADS(t)], (36)

ΠΠΠA = I−A(AHA)−1AH , (37)

S(t) = I4⊗diag(s(t)), (38)

D=
[
Dα Dβ Dψ Dφ

]
, (39)

Dµ =
[

∂u(α,β ,ψ,φ)
∂ µ

|µ1 ... ∂u(α,β ,ψ,φ)
∂ µ

|µM

]
, (40)

where µµµ ∈ {ααα,βββ ,ψψψ,φφφ} and diag(v) denotes a diagonal ma-
trix where [diag(v)]i j = δi jvi and where δi j denotes the kroe-
necker symbol. Straightforward calculations provide :

∂u(α,β ,ψ,φ)

∂α
|αm =

1√
1+ψ2

m

[
ȧ(αm)
0

]
, (41)

∂u(α,β ,ψ,φ)

∂β
|βm =

1√
1+ψ2

m

[
0

ψe jφ ḃ(βm)

]
, (42)

∂u(α,β ,ψ,φ)

∂ψ
|ψm =

1
(1+ψ2

m)
3/2

[
−ψma(αm)
e jφmb(βm)

]
, (43)

∂u(α,β ,ψ,φ)

∂φ
|φm =

1√
1+ψ2

m

[
0

jψme jφmb(βm)

]
, (44)

where ȧ(αm) =
∂a(α)

∂α
|αm and ḃ(βm) =

∂b(β )
∂β
|βm .Thanks to

(36) we can compute the stacked observation based CRB
(CRBs(ααα,βββ )) by extracting the corresponding upper-corner
of CRBs(ηηη).

5.2 Cramer-Rao bounds on AOA for independant obser-
vations
As classical estimation of the position can be achieved
through the independent estimation of both angles α and β

considering the equations (1) and (2), that does not requiere
the narrowband assumption, we can examine the correspond-
ing CRB. Now, the considered unknown parameter vector is

ξξξ
′
=
[
sT

A αααT sT
B βββ

T ]
, (45)

where we define

sA =
[
sT

A(1) ... sT
A(T )

]T
, (46)

sB =
[
sT

B(1) ... sT
B(T )

]T
, (47)

sA(t) = [ sA,1(t) ... sA,M(t) ]
T
, (48)

sB(t) = [ sB,1(t) ... sB,M(t) ]
T
, (49)

and where :
sA,m(t) =

1√
1+ψ2

m
sm(t), (50)

sB,m(t) =
ψme jφm√

1+ψ2
m

sm(t− τm). (51)

Thanks to [8] the classical unconditionnal Cramer Rao
Bound CRBi (for independent observation vectors) is
straigthforwardly given by :

CRB−1
i (ααα,βββ ) =

[
CRB−1

i (ααα) 0
0 CRB−1

i (βββ )

]
, (52)

where

CRB−1
i (ααα) =

2
σ2

T

∑
t=1

Re[SH
α (t)(D

′
α)

H
ΠΠΠαD

′
αSα(t)], (53)

CRB−1
i (βββ ) =

2
σ2

T

∑
t=1

Re[SH
β
(t)(D

′
β
)H

ΠΠΠβD
′
β
Sβ (t)], (54)
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where we define

ΠΠΠα = I−Aα(A
H
αAα)

−1AH
α , (55)

ΠΠΠβ = I−Aβ (A
H
β
Aβ )

−1AH
β
, (56)

Aα = [ a(α1) ... a(αM) ] , (57)

Aβ = [ b(β1) ... b(βM) ] , (58)

D
′
α = [ ȧ(α1) ... ȧ(αM) ] , (59)

D
′
β
=
[
ḃ(β1) ... ḃ(βM)

]
, (60)

and where Sα(t) = diag(sA(t)) and Sβ (t) = diag(sB(t)).
This CRB (52) can also be computed when the signals
are considered narrowband for the whole sensor network
(sm(t− τm) = sm(t)).

5.3 Cramer-Rao Bounds on location errors
Once the CRB for (ααα,βββ ) is obtained, the CRB for (x,y) im-
mediatly follows [1] :

CRB(xxx,yyy) = JTCRB(ααα,βββ )J, (61)

where J is the following Jacobian matrix [1] :

[J]i j =
∂ [γγγ] j

∂ [θθθ ]i
, (62)

where θθθ = [ α1 ... αM β1 ... βM ] and
γγγ = [ x1 ... xM y1 ... yM ].

Once the CRB in (x,y) is obtained we can compute for
each emitter the following expressions in meters

CRBs =
√

CRBs(xm)+CRBs(ym), (63)

CRBi =
√

CRBi(xm)+CRBi(ym). (64)

This expressions are standing for the Cramer-Rao
Bounds in distance for the considered algorithms.

6. SIMULATIONS

In this section we consider two base stations A and B whose
coordinates are (xA,yA) and (xB,yB), respectively. They both
are composed of a three sensor uniform circular array which
radius is 0.5 wavelength (NA = NB = 3). a(.) and b(.) are
chosen with a norm equal to

√
NA. The signals are com-

plex, deterministic and unknown. The carrier frequency is
f0 = 100 MHz. The number of sample is T = 500. The sig-
nal to noise ratio is defined on equation (8). In this section we
choose all ψm equal to 1 and φm equal the geometrical phase
delay. The scenario describing the position of the emitters
and the base stations is decribed the Figure 1. The perfor-
mances of our algorithm are studied trough the root mean
square error (RMS) of the miss distance defined in meters :

ε =

√
1
K

K

∑
k=1

(xm− x̂k)2 +(y− ŷk)2, (65)

where K is the number of Monte-Carlo runs and x̂k and ŷk de-
note the kth estimation of the true position (x,y) of the emit-
ter. When ε is computed through our algorithm that simulta-
neously estimates (stacked observation vector based) the two
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Figure 1: Considered scenario : 2 emitters are in
S1(100,300) and S2(−100,1500) and two base stations A
and B respectively in (−1500,0) and (1500,0).

AOAs, ε is denoted εs and when ε is computed with two
classical independent MUSIC at both stations ε is denoted
εi.

Both εs and εi are compared each other and to their re-
spective CRB : CRBs and CRBi on the Figure 2, according to
the scenario defined in Figure 1. The proposed scenario con-
sists in two sources, one beeing close to the stations (Figure2
(a)) and the other beeing further away (Figure 2(b)). As we
can see in both cases CRBs, the CRB of the model (11) lies
under CRBi. It underlines the potential significant gain of our
method based on an extanded stacked vector. On both cases
the computation of the empirical RMS error show that the
stacked obervation vector algorithm outperforms the classi-
cal one (Figure 2).

On the Figure 3 we study the performance of our algo-
rithm when the product “emitter bandwith × time delay of
arrival between the two stations” (called B× τ in the sequel)
varies. Let us define

γ =
εi

εs
. (66)

On Figure 3 we compare the evolution of γ with B×τ and we
clearly see that provided that B× τ is rather small, we have
γ ≥ 1 meaning that the algorithm based on a extended stacked
vector still outperforms the classical one for both sources.
On the contrary when B×τ becomes larger, γ ≤ 1 : the mod-
elling error are not negligible and lead to a decrease of the
performance of the proposed algorithm.

7. CONCLUSION

Based on the narrowband assumption on the whole sensor
network, we provided an original location algorithm. By
means of an extended stacked observation vector it provides
a simultaneous estimation of the location parameters. The
CRB calculation so as the simulations underline the theoret-
ical and practical improvement compared to a classical loca-
tion algorithm where the parameter are estimated indepen-
dently from each other. We illustrate the fact that provided
that the product “emitter bandwith × time delay of arrival
between the two stations” is small enough, our algorithm ex-
hibits still better performance. A more complete sensibility
analysis so as its extension to more complex scenarios will
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Figure 2: Error Distance for the source in S1 and the source
2 in S2. number of Monte-Carlo runs = 200.
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Figure 3: Evolution of γ defined in (66) with the product B×
τ for the two sources in S1 and S2 (see Figure 1), SNR=10dB,
number of Monte-Carlo runs = 300.

be given in the future.
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