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ABSTRACT 

This paper presents a statistical analysis of the Pseudo-

Affine Projection (PAP) adaptive algorithm when the order 

of the PAP algorithm is smaller than the order of the autore-

gressive (AR) input process. Deterministic recursive equa-

tions are derived for the mean weight and mean-square er-

ror behavior. Monte Carlo simulations show good agree-

ment with the theoretical predictions in steady-state and 

during transient. These results are of special interest in 

practical applications where the computational complexity 

prevents implementation of the sufficient order PAP algo-

rithm for high order AR inputs. 

1. INTRODUCTION 

The Affine Projection (AP) adaptive algorithm [1] is nowa-

days recognized as an attractive alternative to speed up con-

vergence of gradient-based algorithms such as LMS and 

NLMS. The AP algorithm applies weight updates in direc-

tions that are orthogonal to the last P input vectors. This 

decorrelates the input signal and speeds up convergence [2]. 

The improved transient performance comes at the cost of 

increased computational complexity and steady-state misad-

justment. 

A simplified version of the AP algorithm has been proposed 

in [3]. The pseudo-AP (PAP) adaptive algorithm replaces the 

input signal with its autoregressive (AR) prediction. In this 

case, the error vector in the conventional AP weight update 

turns to a scalar for unit step size, resulting in a lower com-

putational cost compared to the conventional AP algorithm. 

The PAP algorithm uses this simplified AP weight update 

but with step size (α) less than one. The PAP presents the 

same behavior as the AP adaptive algorithm only when the 

input signal is truly AR and α=1. Using α<1 provides a 

tradeoff between steady-state misadjustment and conver-

gence speed. 

An analytical model has been derived in [4] for the PAP 

with α≤1, AR inputs of known order and an adaptive filter 

with sufficient length. In [5], this model has been extended 

to the deficient length case (when the length of the plant is 

underestimated). Despite these preliminary results, the study 

of the PAP algorithm behavior still represents a challenge.  

One important unsolved practical issue is the behavior of 

PAP with deficient order, when the chosen value of P is in-

sufficient for a proper modeling of the input process. Such 

situation is common in practical applications. The computa-

tional complexity of an AP algorithm with order H is of or-

der NK
2
 for N adaptive weights. Thus, implementation costs 

may become prohibitive for large values of K. In such case, 

simulation studies show steady-state performance losses that 

cannot be predicted by the available models. A recent paper 

[6] presented analytical models for the mean weight and 

mean square error behaviors of the deficient AP algorithm 

for unity step-size and autoregressive signals. However, the 

developed models cannot be directly generalized to the PAP 

algorithm. This work is a study of the deficient order PAP 

algorithm behavior in system identification. 

The paper is organized as follows. Section 2 introduces the 

input signal model and the notation used. Section 3 formu-

lates the deficient order AP weight update equation. Section 

4 derives the analytical model for the algorithm behavior. 

Section 5 presents Monte Carlo simulations to validate the 

theoretical model. Section 6 concludes the work. 

2. THE INPUT SIGNAL MODEL 

The adaptive system attempts to estimate a desired signal 

d(n) that can be modeled by 

 ( ) ( ) ( )T
d n n r n= +ow u  (1) 

where the N-length vector w
o
=[w

o
0 w

o
1 w

o
2 … w

o
N-1]

T
 models 

the impulse response of the unknown system (plant) and 

u(n)=[u(n) u(n-1) … u(n-N+1)]
T
 is the input regressor, with 

autocorrelation matrix Ru=E{u(n)u
T
(n)}. The input signal 

u(n) is assumed to be a stationary AR process of order H. 

Such process can model a variety of input signals found in 

practical applications. Thus, 

 
1

( ) ( ) ( )
H

i

i

n a n i n
=

= − +∑u u z  (2) 

where u(n-k)=[u(n-k) u(n-k-1) … u(n-k-N+1)]
T
 and z(n)= 

[z(n) z(n-1) … z(n-N+1)]
T
 is a vector with samples from a 

stationary white Gaussian process with variance σz
2
. 

3. THE DEFICIENT ORDER PAP ALGORITHM 

The weight update equation for the PAP algorithm can be 

written as [4], [7]: 

 
( )

( 1) ( ) ( )
( ) ( )T

n
n n e n

n n
α+ = +

Φ
w w

Φ Φ
 (3) 

where w(n)=[w0(n) w1(n) … wN-1(n)]
T
 is the adaptive weight 

vector and the error signal e(n) is given by 
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 ( ) ( ) ( ) ( ) ( )T T
e n n r n n n= + −ow u w u  (4) 

Vector ΦΦΦΦ(n)=[φ0, φ1, …, φN-1]
T
 defines the update direction, 

and is given by: 

 ˆ( ) ( ) ( ) ( )n n n n= −Φ u U a  (5) 

where U(n)=[u(n-1) u(n-2) … u(n-P)]. The PAP order is  

(P+1), where P is the number of past input vectors used to 

determine ΦΦΦΦ(n). The least squares (LS) estimate â(n) of the 

AR coefficient vector a is given by: 

 1ˆ( ) [ ( ) ( )] ( ) ( )T T
n n n n n

−=a U U U u  (6) 

where â(n)=[â1(n) â2(n) … âP(n)]
T and UT

(n)U(n) is assumed 

to have rank P. 

To study the effect of a deficient order in the PAP algorithm 

we assume P<H and express (2) as 

 ( ) ( ) ( ) ( )n n n n= + +u U b U c z  (7) 

where Ū(n)=[u(n-P-1) u(n-P-2) … u(n-H)] contains the (H-

P) past input vectors not included in U(n), b=[a1 a2 … aP]
T
 

and c=[aP+1 aP+2 … aH]
T
. Using (7) in (6) results in 

 ( )1ˆ( ) [ ( ) ( )] ( ) ( )T T
n n n n n n

−  = + + a b U U U U c z  (8) 

Equation (8) shows that the insufficient order LS estimate of 

the AR coefficients is a biased estimate of the real first P 

weights in b. Thus, ΦΦΦΦ(n) obtained from (5) can no longer be 

modeled as a white vector sequence as happened in the suffi-

cient order PAP [4]. 

4. THEORETICAL ANALYSIS 

The following statistical assumptions are used in the analysis. 

A detailed discussion of these assumptions can be found in 

[4] and [7]: 

• A1: The number of adaptive filter is large enough so 

that N>>P. 

• A2: The statistical dependence between z(n) and 

U(n) can be neglected for N>>P. 

• A3: Vector ΦΦΦΦ(n) is orthogonal to the columns of 

U(n). 

• A4: Vectors ΦΦΦΦ(n) and w(n) are statistically independ-

ent. 

4.1 Mean Weight Behavior 

Defining the weight-error vector as v(n)=w(n)-w
o
, equation 

(3) can be written as  

 
( )

( 1) ( ) ( )
( ) ( )T

n
n n e n

n n
α+ = +v v

ΦΦΦΦ

Φ ΦΦ ΦΦ ΦΦ Φ
 (9) 

Using (4) and (5) in (9) yields  

 
( ) ( )( ) ( )

( 1) ( ) ( )
( ) ( ) ( ) ( )

T

a

T T

n r nn n
n n n

n n n n

α
α

γ
+ = − +

ΦΦ Φ
v v v

Φ Φ Φ Φ
(10) 

where 

 ˆ( ) ( ) ( ) ( 1)T

ar n r n n n
α

γ
= − −a r  (11) 

is the filtered noise sequence and γ=1-(1-α)Σ
P

i=1âi [4]. It was 

assumed that â ≅≅≅≅ E{â(n)} = b + ΣΣΣΣc, where 

 1{[ ( ) ( )] ( ) ( )}T TE n n n n−=Σ U U U U  (12) 

Taking the expected value of (10) and using assumption A4 

yields 

 

( ) ( )
{ ( 1)} { ( )} { ( )}

( ) ( )

( )
( )

( ) ( )

T

T

aT

n n
E n E n E E n

n n

n
E r n

n n

α

γ
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+ = −  

 

 
+  

 

Φ Φ
v v v

Φ Φ

Φ

Φ Φ

(13) 

Using A1, the first expected value in (13) can be approxi-

mated as in [7], but considering the nonwhite characteristic 

of ΦΦΦΦ(n) [8]. Hence, 

 
( ) 2

( ) ( ) 1

( ) ( ) 2

T

T

n n
E

n n G σ
Φ

Φ

 
≅ 

− 
R

Φ ΦΦ ΦΦ ΦΦ Φ

Φ ΦΦ ΦΦ ΦΦ Φ
 (14) 

where G=N-P and σΦ
2
 is the variance of the elements of 

ΦΦΦΦ(n) and RΦ=E{Φ
T
(n)Φ(n)}. Since E{ΦΦΦΦ(n)ra(n)}=0 (r(n) is 

zero-mean and independent of any other signal), using (14) 

in (13) yields 

 
2

{ ( 1)} { ( )}
( 2)

E n E n
G

α

γ σ

Φ

Φ

 
+ = − 

− 

R
v I v  (15) 

Note that, differently from the sufficient order PAP case 

(P=H) [4], matrix RΦ in (15) is not diagonal. 

Analyzing (15) for n→∞ it is easy to verify that the deficient 

order PAP algorithm produces an unbiased solution since 

 lim { ( )}
n

E n
→∞

=v 0  (16) 

4.2 Matrix RΦ 

Substituting (8) in (5), post-multiplying the resulting expres-

sion by its transpose and taking the expected value, the auto-

correlation matrix of ΦΦΦΦ(n) can be written as 

 

{ }

{ }

{ }

( ) ( ) ( ){ }

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

T

T T T

T

T T T

E n n

E n n n

E n n n

E n n n n

Φ ⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

=

+

+

+

R z z

z c U P

P U cz

P U cc U P

 (17) 

where PU(n)=U(n)[U
T
(n)U(n)]

-1
U

T
(n) is the projection matrix 

onto the subspace spanned by the columns of the U(n) and 

P⊥(n)=(I-PU(n)) is the projection matrix onto its orthogonal 

complement. 

The first expectation in (17) was already solved in [7]: 

 { } 2( ) ( )T

z

N P
E n n

N
σ⊥ ⊥

−
=z z I  (18) 

Extensive simulations have shown that the second and the 

third terms in (17) are small when compared to the first and 

fourth terms. Neglecting these terms in (17) yields 

 
2

z

N P

N
σΦ

−
≅ +R I ϒϒϒϒ  (19) 

where ϒϒϒϒ=E{P⊥(n)Ū(n)cc
T
Ū(n)P⊥

T
(n)} depends only on the 

input statistics. 

4.3 Mean Square Error 

Squaring (4), using the weight-error vector definition and 

taking the expected value yields 

 2 2{ ( )} { ( )} [ ( )]aE e n E r n tr nΦ= + R K  (20) 

where K(n)=E{v(n)v
T
(n)} is the weight-error correlation 

matrix. E{ra
2
(n)} can be obtained using (8) in (11) and taking 

the expectation. Thus, 
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 ( )
2

2 2

2
{ ( )} 1 2T T T

a rE r n
α

σ
γ

 
≅ + + + 
 

b b b Σc c Πc  (21) 

where 

 
2

{ ( ) ( )[ ( ) ( )] ( ) ( )}
T T T

E n n n n n n
−=Π U U U U U U  (22) 

Using (21) in (20) results in 

 
( )

2
2 2

2
{ ( )} 1 2

[ ( )]

T T T

rE e n

tr n

α
σ

γ

Φ

 
= + + + 
 

+

b b b Σc c Πc

R K

 (23) 

To evaluate the mean square error it is still necessary to 

model the evolution of the weight-error correlation matrix. 

This will be done in the next section. 

4.4 Weight-Error Correlation Matrix 

A recursive expression for K(n) can be obtained as done in 

[4] and [7]. Post-multiplying (10) by its transpose, taking the 

expected value and applying assumptions A1 to A4 yields 

(for details see [4]): 

 

[ ]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2

2

2 2

2

2

2

( 1) ( ) ( ) ( )
( 2)

   

   

T T T

T

T

a

T

n n n n
G

n n n n n n
E

n n

r n n n
E

n n

α

γσ

α

γ

α

Φ Φ

Φ

+ = − +
−

 
 

+  
    

 
 

+  
    

K K K R R K

v vΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ Φ

Φ ΦΦ ΦΦ ΦΦ Φ

Φ ΦΦ ΦΦ ΦΦ Φ

Φ ΦΦ ΦΦ ΦΦ Φ

 (24) 

The first expectation in (24) can be approximated as [7]  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ){ }
( ) ( ) ( ) ( ){ } ( ) ( ){ }

2

2

T T T

T

T

T T T

n n n n n n
E

n n

E n n

E tr n n n n n n

−

 
 
 

    

 ≅  

×

v v

v v

Φ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ Φ

Φ ΦΦ ΦΦ ΦΦ Φ

Φ ΦΦ ΦΦ ΦΦ Φ

Φ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ Φ

 (25) 

where 

 ( ) ( ){ }2

4

1

( 2)

T
E n n

G Gσ

−

Φ

  ≅  +
Φ ΦΦ ΦΦ ΦΦ Φ  (26) 

Differently from the results in [7] E{Φi(n)Φj(n)}≠0 for i≠j. 

We approximate the expectation in (25) by 

 
( ) ( ) ( ) ( ){ } ( ) ( ){ }

{ }( )

T T T
E tr n n n n n n

tr n Φ Φ≅

v v

K R R

Φ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ Φ
 (27) 

The last expected value in (24) is approximated by [7] 
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2
2

T

a

T
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a
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E
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 ≅  

Φ ΦΦ ΦΦ ΦΦ Φ

Φ ΦΦ ΦΦ ΦΦ Φ

Φ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ ΦΦ Φ Φ Φ

 (28) 

The solution to the second and third expected values of (28) 

can be found in [7] for ΦΦΦΦ(n) white. However, following the 

results in [8], through assumption A1, we can use the same 

approximation for ΦΦΦΦ(n) correlated. Proceeding as in [4] and 

using A1, it can be shown that (24) becomes 

[ ]

{ }

( )

2

2

2 4

2
2 2

2

4

( 1) ( ) ( ) ( )
( 2)

( )
( 2)

1 2

( 2)( 4)

T T T

r

n n n n
G

tr n
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G G

α

γσ

α

γ σ

α
α σ

γ

σ

Φ Φ

Φ

Φ Φ

Φ

Φ

Φ

+ = − +
−

+
+

 
+ + + Π 

 
+

− −

K K K R R K

K R R

b b b Σc c c

R

 (29) 

which completes the model for the mean-square error. 

4.5 Steady-State Mean Square Error 

The steady-state mean square error behavior can be deter-

mined from (23) by assuming convergence as n→∞. Using 

K(n+1)=K(n)=K∞ in (29) as n→∞, the trace of (29) becomes 

 

{ }

( ) ( )

( ) ( ) ( )( )

2
2 2

2
2 1 2

2 2 4 2 4

T T T

r

tr

NG G

G G G N G G

α
αγ σ

γ

γ α

∞ Φ

 
+ + + + Π 

 
=

+ − − − −

K R

b b b Σc c c  (30) 

where tr[RΦΦΦΦ]=NσΦ
2
. Using (30) in (23) we obtain 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2

2

2

lim { ( )} 1 2

2 2 2 4 2
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r
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E e n
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α
σ

γ

γ α αγ

γ α
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= + + + × 
 

+ − − − + +  

+ − − −  

b b b Σc c Πc

 (31) 

4.6 Model’s Restrictions 

Through exhaustive simulations, it has been verified that the 

derived model provides good predictions of the algorithm 

behavior in the steady-state phase of adaptation. In general, 

the model’s accuracy during the initial transient phase de-

creases as |v(0)|
2
 and σu

2
/σz

2
 increases. This occurs due to the 

recursive procedure used to obtain Equation (12d) in [2], 

which assumes the algorithm is always adapting (even before 

n=0). To overcome such limitation is a very difficult chal-

lenge and remains an open problem in the study of the AP 

and PAP algorithms. 

5. SIMULATIONS 

This section presents simulations to verify the accuracy and 

limitations of the analytical models given by equations (15), 

(23) and (29). In all cases, the statistics of the input signal 

(matrices ϒϒϒϒ, ΣΣΣΣ and ΠΠΠΠ) have been numerically estimated from 

the input process. The plant is obtained from a 64-tap Han-

ning window with unit norm; the weights were initialized 

with zero values; σr
2
= 10

-6
; σu

2
= 1 and 150 runs. The input 

signal was obtained through an eighth order AR model 

(H=10) with coefficients a=[ -0.9 0.7 -0.6 0.5 -0.45 0.35 -0.3 

0.25 -0.2 0.1 ] and σz
2
= 0.538. Fig. 1 and 2 show excess 

mean square error (E{e
2
(n)}- σr

2
) simulations and theoreti-

cal predictions for two deficient cases (P=2 and P=4) for 

α=0.4 and α=0.9. Figs. 3 to 6 show the mean weight behav-

ior for coefficients 20, 30 and 40 for different sets of pa-

rameters. Horizontal lines represent the true values of the 

weights to be identified. Analysis of the obtained curves in 
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steady-state agrees with the theoretical result predicted by 

(16) and (31) for different values of P. 

6. CONCLUSIONS 

This paper presented analytical models for predicting the 

stochastic behavior of the deficient order pseudo-Affine pro-

jection algorithm. Deterministic recursive equations were 

derived for the mean weight and mean square error. Simula-

tion results have shown good agreement with theoretical pre-

dictions in steady-state. During the transient phase, good 

matches between theoretical models and simulations are ob-

tained as the used theoretical assumptions are assured. 
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Figure 1 – Excess mean square error for P=2. Simulations (ragged 

- red) and model (continuous - blue). 

 

 
Figure 2 – Excess mean square error for P=4. Simulations (ragged 

- red) and model (continuous - blue). 

 

 
Figure 3 – Mean weight behavior for P=2 and α=0.4. Simulations 

(ragged) and model (continuous). (a) coefficient 20; (b) coefficient 

40; (c) coefficient 30. Horizontal lines represent the true values of 

the plant coefficients. 
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Figure 4 – Mean weight behavior for P=4 and α=0.4. Simulations 

(ragged) and model (continuous). (a) coefficient 20; (b) coefficient 

40; (c) coefficient 30. Horizontal lines represent the true values of 

the plant coefficients. 

 

 
Figure 5 – Mean weight behavior for P=2 and α=0.9. Simulations 

(ragged) and model (continuous). (a) coefficient 20; (b) coefficient 

40; (c) coefficient 30. Horizontal lines represent the true values of 

the plant coefficients. 

 
Figure 6 – Mean weight behavior for P=4 and α=0.9. Simulations 

(ragged) and model (continuous). (a) coefficient 20; (b) coefficient 

40; (c) coefficient 30. Horizontal lines represent the true values of 

the plant coefficients. 
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