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ABSTRACT 

 Discrete Wavelet Transform (DWT) and its generaliza-

tion, Wavelet Packets (WPs) have acquired central position 

for signal representation. DWT provides good compaction 

for low pass signals only. On the other hand WPs offers 

good approximation property for arbitrary signal but the 

associated computational cost of finding an optimal WP 

basis is quite high. In this paper, we introduce a signal 

conditioning based modulated wavelet transform. The pro-

posed transformation provides better approximation per-

formance than that offered by DWT for signal with arbi-

trary spectra, which can be used in signal approximation, 

compression, de-noising etc. The proposed transformation 

in its original form requires computation of signal parity 

information for which a fast algorithm is proposed. The 

proposed transform can be implemented efficiently similar 

to wavelet transform. Simulation results to demonstrate the 

improved approximation performance are also provided. 

1. INTRODUCTION AND MOTIVATION 

In the last two decades the wavelet transform has become a 

vital tool for signal representation and processing [1] - [4]. 

The multiresolution features, embedded in the wavelet trans-

form, are typically suited for a variety of applications, such 

as, including among others, signal approximation, analysis, 

compression, coding, storage and transmission [5] - [9]. It 

provides good compaction  for signals which are low pass in 

nature. But the signal in practice can have arbitrary spectra 

[1] - [3], [10]. The DWT being a fixed transform is typically 

suited for low pass signals.  At the same time efficient algo-

rithm exits for their fast implementation, which not only rely 

on divide and conquer strategy but also on the other features 

like structured basis etc. [11] - [14]. Wavelet packets [15] - 

[19] are an elegant generalization of wavelets transformation 

and provide flexible subband decomposition for arbitrary 

signal. The process of selecting the best basis for a particular 

signal, for compactly representation, is computationally very 

intensive [17] - [19]. Hence, the issue of representing a sig-

nal having arbitrary spectra with improved compaction 

property and at reduced computational cost remains impor-

tant. 

In this article, a novel signal conditioning transformation is 

introduced based on the spectra of the given signal. Based 

on this a modification of DWT is presented with improved 

approximation performance. Compared to DWT, resulting 

transformation is an adaptive transformation and provides 

improved approximation performance for arbitrary signal. 

The signal conditioning information is compactly described 

by a parameter called signal parity, which is computational 

intensive activity. This limitation is addressed through a 

computationally efficient algorithm to find signal condition-

ing information based on the signal spectra. In this paper 

these topics will be described in the same order.  

2. SIGNAL CONDITIONING BASED WAVELET 

TRANSFORM 

Let x[n]  l2(Z) be a given discrete time deterministic 

signal having arbitrary spectra. The J level decomposition 

by a DWT of x[n] results in approximation space, VJ and 

detailed spaces WJ, WJ-1, WJ-2, … , W1. The role of each 

stage of DWT decomposition is to compact the signal ener-

gy in few coefficients, and the emphasis has been on the 

decomposition low frequency bands, as shown in Fig. 1. If 

after j stages of decomposition, the signal in Vj has more 

energy in high frequency band than in the low frequency 

band, then on further decomposition, Vj+1 space will have 

less signal energy compared to that in Wj+1. Hence, further 

decomposition of Vj+1 space, which has less signal energy 

compared to that in Wj+1, would not provide any additional 

energy compaction. That is further efficiency in terms of 

approximation performance will not be achieved, and hence 

further decomposition of Vj as such is not required. With 

these considerations in mind, we propose a signal condi-

tioning transformation, which ensures better decorrelation 

at each stage of signal decomposition. In the following sub-

sections we introduce a modification of DWT based on the 

concept of signal conditioning [20], which provides an al-

ternate and an efficient non-linear representation for signals 

with arbitrary spectra. 
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Figure 1 – Vector space for J-band decomposition by DWT in 

frequency domain. 
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2.1 Signal Conditioning 

Let X(e
j

) be the discrete-time Fourier Transform of the 

signal x[n]. We define two parameters, namely, Low Pass 

Signal Energy (LPSE) and High Pass Signal Energy 

(HPSE) as follows:  
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We propose and define the following signal conditioning 

transformation aT  for the given signal as: 
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where, the superscript „a‟ is used to denote the signal condi-

tioning for analysis side. In the first case, in (3), the signal 

conditioning transformation is an identity transformation, 

and the signal y[n] becomes a low pass signal. For the sec-

ond case, taking discrete time Fourier transform of both 

sides, we get  


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where, we have used the fact that 1je . Hence the sig-

nal is transformed to low pass again. In the z-domain, the 

transformation in (3) becomes: 
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That is, irrespective of the type of signal, the conditioning 

transformation always transforms the given signal into a 

dominantly low pass signal.  

Based on this conditioning transformation, we propose a 

modification of DWT transform. Let the embedded DWT in 

the proposed transformation is implemented by J stages of 

perfect reconstruction (PR) filter bank, where analysis and 

synthesis filter pairs are  )n(h),n(h 10  and  )n(g),n(g 10  

respectively. Here, )n(g),n(h 00  are low pass filters and 

)n(g),n(h 11  are high pass filters respectively. We propose 

one stage of conditioning based modulated wavelet trans-

formation as a stage of signal conditioning followed by de-

composition by a stage of DWT. The signal - conditioning 

step ensures that the signal corresponding to low pas filter-

ing path has more signal energy compared to that in the high 

pass filtering path. Then for better decorrelation, it is mean-

ingful to apply the next stage of decomposition on the low 

pass filtering path. We call the proposed transformation as 

Spectral Density Driven Wavelet Transformation 

(SDDWT). The resultant complete signal conditioning 

based J level SDDWT decomposition tree is as shown in 

Fig. 2(a), where, 
a
jT , is the signal conditioning transforma-

tion at the j-th stage of decomposition by the proposed 

SDDWT. This process leads to decomposition of the signal 

in vector sub spaces VJ
’
 and Wj

’
 for j = 1 to J. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reconstruction process takes into account the signal 

conditioning and provides for the synthesis filter bank pair 

of a stage of DWT followed by a synthesis signal condition-

ing transformation s
jT  at each stage of reconstruction. The 

signal conditioning at the j-th stage of reconstruction is de-

fined in terms of signal conditioning at the j-th stage of de-

composition a
jT  as follows: 
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 That is, the transformation s
jT  at j-th stage of reconstruc-

tion is same as that at the stage j of analysis tree and does 

not depend on the statistics of the transform coefficients, i.e. 

it is an identity if the a
jT  at that level of decomposition is 

identity and frequency shifting otherwise. The signal recon-

struction process by the synthesis tree is shown in Fig. 2(b). 

For J-level SDDWT based decomposition, we need to 

compute signal-conditioning information J times. This in-

formation is compactly represented by a parity vector p of 

the decomposition, which we define as follows: the j-th com-

ponent‟s value, p(j) is „1‟ if the signal conditioning transfor-

mation 
a
jT  is frequency shifting and „0‟ if 

a
jT  is identity at 

the j-th level i.e. 
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Here LPSE(j) and HPSE(j) are the signal energies, in the low 

pass and high pass bands, respectively, before the  j-th  level 

of decomposition as defined by (1) and (2). The proposed 

scheme for the J level of decomposition is as shown in Figs. 

2(a) and 2(b).  This is the only extra cost compared to DWT. 

In a number of applications, we would like infer something 

about signal using a subset of information. In wavelet repre-

sentation this role is played by signal corresponding to VJ 

space. This signal provides the „average‟ information about 

signal. This is particularly good for signals which are low 

pass and not for others. We call the signal corresponding to 

subspaces VJ
’
 as „representative signal‟ as it is representative 
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Figure 2(a) – SDDWT decomposition tree for J-stages 

SDDWT. 
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Figure 2(b) – SDDWT reconstruction tree for J-stages SDDWT. 
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of the given signal independent of the spectra. This is be-

cause, irrespective of type of given signal, this subspace car-

ries more energy per coefficient. This has been ensured be-

cause of signal conditioning. Figure 3 shows 4-level decom-

position of frequency plane for parity p = [0 1 0 1]. Note the 

corresponding emphasis on the particular band. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Properties of DWT 
The proposed SDDWT transform has a number of positive 

features.  The fundamental difference between the DWT and 

the proposed SDDWT is that while DWT is blind to signal 

characteristics, the SDDWT is an adaptive transformation 

and utilizes the spectral information of the signal at each 

stage of decomposition for decorrelation. That is, it is able to 

provide better or equal approximation performance when 

compared to DWT. Signal conditioning is an integer, unary 

transformation, which is particularly important attribute 

from implementation point of view; the complete SDDWT 

scheme is invertible as the filter bank is also assumed to 

have perfect reconstruction (PR) property. The complete 

specification of the SDDWT decomposition requires the 

information about the SDDWT coefficients along with the 

parity information. The SDDWT also keeps the nice proper-

ties like successive approximation, structured basis, and 

computational regularity etc. of the conventional DWT in-

tact. Hence, existing fast algorithm for DWT implementa-

tion in software or hardware can be also used for SDDWT 

implementation. 

3. FAST SIGNAL PARITY COMPUTATION 

ALGORITHM 

The computation of parity at each stage of decomposition is 

the additional computational burden of the proposed trans-

formation. Hence, it is clear that any computationally effi-

cient scheme for the implementation of SDDWT would 

hinge upon the scheme to find signal parity information. To 

this effect, we propose an algorithm for efficiently comput-

ing the parity information, leading to an efficient implemen-

tation of SDDWT. 

Let x[n] be a given signal of length Ns and let )z(X  and 

)e(X j  respectively, be the z-transform and discrete time 

Fourier transform of the given signal. Also for the analysis 

filters, )(zH i  and )( j

i eH for i = 0 and 1, be, respec-

tively, the z-transform and discrete time Fourier transform. 

The key insight about the proposed algorithm is obtained by 

observing the dependence of LPSE and HPSE, at each stage, 

on the given signal and the wavelet used for the decomposi-

tion. This algorithm obtains the signal conditioning informa-

tion without doing the actual decomposition at each stage by 

the SDDWT. 

Let Xj(z) be the signal in the low pass path 

after j stages of decomposition by the SDDWT scheme, with  

X0(z) X(z) the original signal. Referring to the Fig. 4, one 

can easily write )(zX j  as: 
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Equivalently, in the frequency domain, the signal at different 

stages is given as: 
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Equation (9) relates the spectrum of the signal at the (j-1)-th 

stage to that of the j-th stage, in the low frequency filtering 

path. Hence using (9), the spectra, and hence the parity can 

be computed for each stage of decomposition, from the 

spectra of the given signal and the analysis side low pass 

filter.  

 

 

 

 

 

 

 

 

Parity Calculation Algorithm 

Step 1: Initialization Evaluate the DFT of the signal as well 

as that of analysis filter h0 at N0 = N+1 equidistant frequency 

points. Here N is chosen as some power of 2, i.e. N=2
q
 , 

where q is greater than the number of stages J of decomposi-

tion i.e. q  J and N  Ns. 

Evaluate 
N

)1k(
)k(





 , for k=1 to N0 and set j=1. 

Also define 1
2

N
N

jj   as the number of frequency points 

after j stage of decomposition. 

Step 2: Calculate the LPSE(j) and HPSE(j), the low pass and 

high pass energy prior to the j-th stage of decomposition, 

using 1jN  frequency points by : 
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Figure 3 – Vector space for 5-band decomposition in fre-

quency domain by SDDWT with parity p = [0 1 0 1]. 
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Figure 4 – Signal dependence in lowpass filtering path of 

SDDWT decomposition. 
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Then find the parity p(j) using (7) and if j = J then STOP. 

Step 3: Calculation of  )e(H)e)1((X 2/j
0

2/jp

1j
j   for Nj 

points.  

Use the value of )e(HHN )k(j
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stage for Nj frequency points depending on the value of par-

ity p(j). 

If p(j) = 0, then frequency points are given by 
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2

1
)e(X kkkk

)k(j
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by (18) for k = 1 : Nj .  Set  j = j+1. And go to step 2. 

 

Computational Complexity and Comments: 
The efficiency, of the algorithm, is primarily due to 

two reasons. Firstly, the algorithm requires only two evalua-

tions of ‘N+1’ point Discrete Fourier Transform (DFT).  

This is a drastic reduction in comparison to direct computa-

tion where DFT‟s of size 1
2

N
N

1j1j 
  point are to be 

computed for each stage ‘j’ from 1 to J. Secondly, as de-

scribed above, the number of DFT points N can be chosen 

much smaller than the signal‟s length Ns. This is because, 

for accurate comparison of LPSE and HPSE at each stage of 

decomposition, LPSE and HPSE need not be absolutely 

accurate. So a small number of DFT points are sufficient for 

these calculations. Further, this choice and (9) dictate that 

the number of frequency points decrease by a ratio of 2, as 

we go from a stage to next. On these two counts, the pro-

posed algorithm provides a computationally efficient and 

fast solution. This is the only additional computational cost 

of proposed scheme, when compared to the conventional 

DWT. Importantly; the cost of reconstruction is same as that 

for DWT. 

4. SIMULATION RESULTS AND DISCUSSIONS 

In this section we present the numerical simulation results to 

compare the performance of the SDDWT with that of DWT. 

Various clippings/frames of real life signals are chosen as test 

signals. The simulations are done on Matlab software. First 

we take up the simulation results to demonstrate the „aver-

age‟ and „representative‟ signal interpretation. In this regard, 

we have chosen a „speech‟ frame as shown in Fig. 5. We have 

taken wavelet „bior 3.5‟ for simulations and did 6 stages of 

decomposition. For this signal, the parity vector is p = [0   0   

0   1   1   1], which shows that even though signal is domi-

nantly low pass at low scale but at higher scale it is deviating 

from the low pass nature. The signal is reconstructed from 

the V6 and V6’  subbands for DWT and for SDDWT respec-

tively. Note that both the bands have the same number of 

coefficients. The PSNR is 7.6277 dB for the „average signal‟ 

and 9.3052 dB for „representative signal‟. Simulation results 

clearly demonstrate that the signal reconstructed from 

SDDWT scheme is a better replica of the given signal than 

from the wavelet scheme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figs. 6(a and b), different frames of speech and music 

clipping from different sources are taken. The approxima-

tion/compaction performance is measured via reconstructed 

signal for a fixed percentage of coefficients (pN) having 

maximum magnitude across all the scales. From the simula-
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Figure 5 – This figure shows the given signal (speech), its magnitude 

spectrum and the average signal and representative signal. J = 6. 

PSNR(dB) for average is  7.6277 dB and for representative is 9.3052 

dB. Parity vector for the signal is p = [0     0     0     1     1     1]. 
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tion results we can clearly see that SDDWT performs better 

than the conventional DWT. The parity vector is calculated 

using the proposed fast signal parity computation algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSIONS 

In this article, an adaptive SDDWT transform based on a 

new concept of signal conditioning is introduced. The 

SDDWT transform provides much improved approximation 

than the conventional DWT. Larger the deviations from low 

pass nature, better is the approximation performance com-

pared to that for DWT.  The structure of implementing the 

decomposition and reconstruction transformation is similar to 

that of DWT; hence prevalent fast algorithm to implement 

DWT can be used. The signal conditioning information is 

compactly represented by J bits parity vector for J levels of 

SDDWT decomposition and is computed by a fast algorithm. 

Then an important concept of “representative” signal, which 

is a better replica of the given signal, is also given. The pro-

posed transformation can represent signal with arbitrary 

spectra efficiently and hence can be exploited for compres-

sion, de-noising and analysis etc. 
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Figure 6(a) – This figure shows PSNR(db) for different sig-

nal clippings of speech signals for DWT and SDDWT, when 

signal reconstructed from pN percentage of coefficients. 
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Figure 6(b) – This figure shows PSNR(db) for different signal 

clippings of song/music signals for DWT and SDDWT, when 

signal reconstructed from pN percentage of coefficients. 
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