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ABSTRACT

We propose an adaptive level crossing approach for the sam-
pling and reconstruction of signals for applications where
clock-free and low-power data gathering are required. Due
to the lack of a priori information on the signal statistics,
uniform levels are typically chosen in level-crossing (LC)
sampling. Our approach uses as reference levels the local
means obtained from an asynchronous sigma delta modu-
lator (ASDM). This signal-dependent sampling constitutes
non-uniform sampling with local means and their times of
occurrence. The local means can be seen as optimal signal
estimators in a mean-square sense. The reconstruction of
the original signal is approached using Prolate Spheroidal
Wave functions which performs well when the signal is time-
limited and essentially band-limited. The optimality of the
levels can be illustrated when comparing our procedure with
uniform LC sampling and reconstruction. The proposed pro-
cedure is especially suited for applications where the signal
occurs in bursts, and data gathering is done under clock–free,
low–power and low–transmission conditions.

1. INTRODUCTION

Although non-uniform sampling is not a preferred method
for data acquisition, since both samples and their corre-
sponding sample times are needed for reconstruction, in
many applications it is an alternative to conventional time-
driven sampling. That is the case whenever clocks are not
desirable, and high energy efficiency and low data transmis-
sion are required. In biomedical monitoring [9], for brain– or
heart–computer interfaces, speech processing and networked
control [1], level crossing (LC) or Lebesgue sampling have
been considered as an alternative to conventional time-driven
sampling. In LC sampling the signal is not sampled but di-
rectly quantized whenever the signal crosses a certain level.
As indicated in [2] this approach avoids frequency aliasing
and could be applied to signals that are not band-limited.
LC is particularly useful in dealing with signals that deliver
the information in bursts rather than in a constant stream.
Such signals appear in biomedical applications [9] and in
sensor network transmissions [3]. Because of their short du-
ration and bursty nature, these signals are not necessarily
band-limited. Level crossing (LC) [4] is a form of nonuni-
form sampling that can be used for bursty or sparse signals.
Given the economical sampling, LC sampling may be used
to obtain a discrete representation for sparse signals in the
compressive sensing [5].

The advantages of LC sampling in both data transmis-
sion and signal reconstruction depend on the proper place-
ment of reference levels within the dynamic range of the
input. Typically, the levels have been treated as uniform
quantization levels [4, 6, 7] instead of optimal level alloca-
tion [3], where the signal dictates the rate of data collection
and quantization.

In this paper, we propose a novel approach to determine
signal–dependent reference levels for the LC sampling. These

adaptive levels are obtained by using an asynchronous sigma
delta modulator (ASDM) which is a nonlinear feedback sys-
tem that performs time–encoding of the signal [9]. The out-
put of an ASDM is a binary signal that is continuous in
time. The ASDM provides a clock-less data acquisition and
reconstruction from the sample times [9, 10, 11]. Moreover,
it enables the computation of the local means of the signal.
It is these local means that we will use as the levels for the
LC sampling. The local means require that more samples be
taken when the signal is bursty and fewer otherwise.

Considering signals that are time limited and essentially
band-limited (a high percentage of the signal energy is con-
centrated in a certain bandwidth) the reconstruction is ap-
proached using prolate spheroidal wave functions (PSWFs).
In biomedical data monitoring, ASDM-based adaptive LC
sampling can be used efficiently and implemented as in [12].
As illustrated by the simulations, the ASDM-based adaptive
LC sampling and reconstruction using PSWFs show a lot
of promise in the processing of time-limited and essentially
band-limited signals, including bursty signals [13, 14, 15].

2. ASYNCHRONOUS SIGMA DELTA
MODULATORS

An Asynchronous Sigma Delta Modulator (ASDM), Fig. (1),
is a nonlinear feedback system consisting of an integrator and
a non-inverting Schmitt trigger [8]. In the ASDM, amplitude
information of a signal x(t) is transformed into time infor-
mation.
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Figure 1: Asynchronous sigma delta modulator

2.1 Duty-cycle Modulation and Time-encoding

Time-encoding can be seen as duty-cycle modulation, where
a sequence of binary rectangular pulses (Fig.2) is character-
ized by the duty-cycle defined for two consecutive pulses of
duration Tk = αk +βk, αk being the duration of the pulse of
amplitude 1 and βk the duration of the other pulse of ampli-
tude −1. For x(t), tk ≤ t ≤ tk+2, the duty-cycle is defined
as

0 <
αk

Tk
=

1 + x(t)

2
< 1 tk ≤ t ≤ tk+2 (1)

Thus, if the signal is zero for all times, x(t) = 0, −∞ <
t < ∞, it is modulated into a train of square pulses with
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αk = βk or with duty cycle of αk/Tk = 0.5. If x(t) = A,
|A| < 1, tk ≤ t ≤ tk+2, then the two pulses for that time are
rectangular where

αk =
(1 + A)Tk

2

and βk = Tk − αk. If the signal is not constant in a time
segment, the duty-cycle is not clearly defined with respect
to the amplitude.

tk tk+1 tk+2 t

z(t)

· · ·· · ·

αk βk

1

−1

Figure 2: Duty-cycle modulation.

Suppose x̄k is the local average of the signal in tk ≤ t ≤
tk+2, from the above we can see that it can be obtained from
the αk and βk in the duty cycle modulation, i.e.,

x̄k =
αk − βk

αk + βk

αk = tk+1 − tk, βk = tk+2 − tk−1 (2)

Time encoding has been proposed in [9] for representa-
tion of a bandlimited signal using ASDMs. The relationship
between the binary output z(t) and the input x(t) of the
ASDM for tk+1 > tk, and integers k ≥ 0, is given by the
integral equationZ tk+1

tk

x(u)du = (−1)k[−b(tk+1 − tk) + 2κδ] (3)

Thus from the duty-cycle modulation, or the output z(t) of
the ASDM, giving the time-sequence {tk} we are only able
to recover local averages in each segment. If the signal x(t)
is continuous in tk ≤ t ≤ tk+2, the local average coincides
with one of the values x(ζ) for tk ≤ ζ ≤ tk+2 and one could
think then of a non-uniformly sampled signal for which we
would like to interpolate the rest of the signal values in that
segment. Thus, equation (3) provides a way to obtain that
interpolation as we will see in the next section.

The train of rectangular pulses z(t) displays non-uniform
zero-crossing times that depend on the input signal ampli-
tude. The reconstruction of the signal x(t) can be done by
approximating the integral in (3), by the trapezoidal rule.
Using an increment ∆ = (tk+1 − tk)/D for an integer D > 1
(the larger this value the better the approximation), we have
that Z tk+1

tk

x(τ)dτ ≈ ∆

"
x(tk)

2
+

D−1X
`=1

x(tk + `∆)

+
x(tk+1)

2

–

We then obtain the following reconstruction algorithm:

(i) v = Qx = QPγ

(ii) γ = [QP]†v

(iii) x = Pγ

where v is the right term in (3), Q is the matrix for the
trapezoidal approximation, P is either a matrix with sinc
functions or PSW functions [9, 15]. The symbol † represents
pseudo-inverse. Thus the signal x(t) can be reconstructed
from the zero crossings {tk} of the output of the ASDM z(t).
The accuracy of the reconstruction however depends on the
approximation of the integral, and on the signal being band-
limited. Our approach strives to avoid these two constrains.

2.2 Calculation of Local Averages

Assuming the output x(t) of the ASDM is bounded as
|x(t)| ≤ c < b, the output of the integrator at time tk+1 > tk

is

y(tk+1) = y(tk) +
1

κ

Z tk+1

tk

[x(u)− z(u)]du.

If the Schmitt trigger is in the state (−b,−δ) at t = tk,
(y(tk) = −δ and z(tk) = −b) , at some time tk+1 > tk we
have that

δ = −δ +
1

κ

Z tk+1

tk

[x(u) + b]du

= −δ +
1

κ

Z tk+1

tk

x(u)du + b(tk+1 − tk)

Right after tk+1, the trigger switches to a (b, δ) state so that
for some time tk+2 > tk+1

−δ = δ +
1

κ

Z tk+2

tk+1

[x(u) + b]du

= δ +
1

κ

Z tk+2

tk+1

x(u)du− b(tk+2 − tk+1)

which when added givesZ tk+2

tk

x(τ)dτ = tk+2 − 2tk+1 + tk = αk − βk (4)

where αk and βk are defined as above. To obtain the local
average we need Tk = αk + βk, which are obtained from the
derivative of the binary signal z(t),

dz(t)

dt
=

X
k

2(−1)kδ(t− tk) (5)

which in practice can be obtained using a time-to-digital
converter [12].

The value chosen for κ is of great significance in the com-
putation of the local averages. If the value of κ is chosen
appropriately, the difference of the output of the integrator
at times tk and tk+1 is

y(tk+1)− y(tk) = 2δ =
1

κ

Z tk+1

tk

[x(u)− z(u)]du

If we let δ = 0.5,

κ =

Z tk+1

tk

x(u)du + αk
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and since |x(t)| < c ≤ 1 we obtain the following upper bound
for κ > 0

κ ≤
˛̨̨̨Z tk+1

tk

x(u)du

˛̨̨̨
+ αk ≤ αk(c + 1)

indicating that it depends on the local variation of the signal
amplitude or local frequency.

If x(t) is bandlimited, its reconstruction from the time
sequence {tk, k = 0, 1, · · ·} is possible if [9]:

max
k

(αk) = max
k

(tk+1 − tk) ≤ TN (6)

where TN = π/Ωmax is the Nyquist sampling period. Thus
for bandlimited signals, we have

κ ≤ (1 + c)TN (7)

Figure 3 shows the operation of ASDM on an arbitrary sig-
nal.
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Figure 3: Operation of ASDM

3. ADAPTIVE LEVEL-CROSSING SAMPLING

Level-crossing (LC) sampling is threshold based: the signal
x(t) is compared with a set of reference levels and only when
the signal exceeds one of the reference levels the sample is
taken. Thus, the signal determines when samples are taken
and what the quantization level is, i.e., it is non-uniform
sampling. For a bursty signal more samples are taken dur-
ing the burst and fewer otherwise. For a smooth signal the
samples are randomly but uniformly distributed. The recon-
struction of the signal depends on this distribution even in
the case of bandlimited signals [17].

A piecewise constant reconstruction of x(t), is obtained
for a set of reference levels {qk} and non-uniform sample
times {ζk} as [3]:

x̂(t) =
X

k

qk[u(t− ζk)− u(t− ζk+1)] (8)

where u(t) is the unit-step function. Assume we wish to
minimize a mean-square error

ε = E[x(t)− x̂(t)]2 (9)

by choosing the levels {qk}. It is not possible to obtain op-
timal levels without statistical knowledge of the signal and
choosing uniform levels does not provide the optimal solu-
tion, either. In [3], the authors propose a sequential algo-
rithm to obtain optimal levels.

To minimize the mean-square error ε with respect to the
levels {qk}, with no additional information that the local
averages provided by the ASDM, the local average x̄k in
[tk, tk+2] constitutes an optimal estimate of the signal in the
interval. This is so since no second-order statistics is avail-
able. These local averages are completely determined by the
time-codes {tk, k = 0, 1, · · ·}.

To insure that the reconstruction is possible, we assume
the signals are not only time-limited, but also essentially
band-limited or that most of its energy is within a certain
frequency band [15]. The essential bandwidth can be used
to determine the value of κ for the ASDM.
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Figure 4: Adaptive LC sampling ((a) and (b)) and recon-
struction error (c) of a smooth signal.

4. SIGNAL RECONSTRUCTION USING PSWF

The PSWFs, {ϕn(t)}, are real-valued functions with finite
time support that maximize their energy in a given band-
width [13]. These functions provide an interpolation of a
continuous signal similar to the sinc interpolation in the sam-
pling theory [14, 15]. Indeed, the sinc function S(t) can
be expanded in terms of the basis {ϕn(t)}, with Ts as the
Nyquist period, as

S(t− kTs) =

∞X
m=0

ϕm(kTs)ϕm(t) (10)

allowing us to write the sinc interpolation of a band-limited
signal x(t) as

x(t) =

∞X
m=0

"X
k

x(kTs)ϕm(kTs)

#
ϕm(t)

=

∞X
m=0

γmϕm(t) (11)

which is an infinite dimensional interpolation of the continu-
ous signal in terms of PSWFs [14]. The finite reconstruction
for the above at uniform sampling times tk is:

x̂(tk) =

M−1X
m=0

γM,mϕm(tk) (12)

where the coefficients are

γM,m =

N−1X
k=0

x(kTs)ϕm(kTs)
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and the value of M is obtained when eigenvalues {λn} asso-
ciated with the length N PSWFs are approximately zero for
n ≥ M .
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Figure 5: Uniform LC sampling ((a) and (b)) and recon-
struction error (c) of a smooth signal.

The matrix form of the projected signal at the uniform
times {tk = kTs} is

x̂(tk) = Φ(tk)γM (13)

where x̂(tk), 0 ≤ k ≤ Nn − 1 is a length Nn vector contain-
ing samples {x(kTs)}, γM is the vector formed by the coeffi-
cients of the projection and the matrix Φ(tk) is composed of
PSWFs. The LC-sampling using the local means {x̄k} gives
a set of non-uniform times tk ≤ ζk ≤ tk+2 (which we assume
is a subset of a uniform sample values) where the continu-
ous signal equals the local mean, i.e., x(ζk) = x̄k Thus, the
couples

{x(ζk), ζk} k = 0, 1, ..., N` − 1 (14)

provide the necessary data for the PSWF interpolation:

x(ζk) = Φ(ζk)γM (15)

Since the values {ζk} occur within [tk tk+2] in a non-
deterministic way, the matrix Φ(ζk), of dimension M ×N`,
can be considered non–deterministic. Using its pseudo-
inverse we obtain the coefficients

γM = [Φ(ζk)]† x(ζk),

which can be used to obtain the reconstructed signal

xr(t) = Φ(t) [Φ(ζk)]† x(ζk)

= Θ x(ζk) (16)

Considering the {x(ζk)} the measurements, the recon-
structed signal resembles the results obtained in compressive
sensing.

Figure 4 shows adaptive LC sampling together with re-
construction error for a smooth signal, while Fig. 5 shows
the results using uniform LC sampling with 8 levels and the
accompanying normalized reconstruction error. We chose 8
uniform levels, because we thought it would be a fair com-
parison in terms of the step size of the levels. Although the
uniform LC has 40 samples compared to 21 samples of the
adaptive LC, the normalized reconstruction error for the uni-
form LC is 40× 10−4 compared to 7× 10−4 of the adaptive
LC sampling. It is possible to obtain a lower reconstruction
error for the uniform LC sampling but that would require
many more samples. Notice the different distribution of the
crossing times, in the adaptive case they are more evenly
distributed.

5. SIMULATIONS

The significance of our procedure is highlighted when sam-
pling and reconstructing bursty signals. In the simulations
we used a bursty signal which is from the wavelet decompo-
sition of an EEG signal with a sampling period of 5× 10−3

provided by [16]. We used 0.64 seconds of that signal which
would require 130 samples in uniform sampling case. We
converted the signal into continuous form by using sinc in-
terpolation. An ASDM is then used to find the values of the
local means. For the uniform sampling the dynamic range
is divided into equal levels. As shown in Figs. 6 and 8,
the quantization is finer with the uniform levels compared
to the adaptive one, but the distribution of the samples is
more uniform for the adaptive case. There are certain inter-
vals where the uniform sampling does not have any samples
and as indicated in Fig. 9, it is in those segments where
the reconstruction is the worst. Despite the fewer samples
in the adaptive sampling, the reconstruction is almost per-
fect as in Fig.7. In fact, we found it better than using the
trapezoidal approximation of the integral resulting from the
ASDM processing, shown in Fig. 10.
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Figure 6: Adaptive LC of a bursty signal: (a) quantization
with local means, (b) times of local averages.
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Figure 7: (a) PSWF reconstruction from local levels and
their times, (b) reconstruction error.

6. CONCLUSIONS

We propose a novel approach for the sampling and recon-
struction of signals using level crossing. In particular, our
method is shown to perform well for bursty signals, com-
monly found in biomedical applications and sensor network
transmission. Using local mean values as the levels for LC
sampling, the signal dictates the rate of data collection. The
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Figure 8: Uniform LC of a bursty signal: (a) quantization
with uniform levels, (b) times of uniform levels.
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Figure 9: (a) PSWF reconstruction from uniform levels and
their times, (b) reconstruction error.

reconstruction is done using PSW functions under assump-
tions of finite time support and essentially band-limited for
the signals. The simulations indicate it is the distribution of
the missing samples that determines the performance of the
proposed method.

The advantage of our method over conventional uniform
sampling is in demonstrated in applications where signals
do not satisfy the band–limited conditions, or where high
clock frequencies could cause physical complications. Using
ASDM and level-crossing sampling devices provide a low-
power performance and do not cause frequency aliasing. Fur-
ther study is needed to establish the frequency performance
of the proposed method.
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