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ABSTRACT
The analysis of 3D face data is very promising in improving
the identification performances of individuals. In this paper
two algorithms will be presented to match 3D face shapes
(3D to 3D) and also to compare a synthetically generated 2D
view with a given 2D face image (3D to 2D).

The algorithm to match 3D shapes is based on the extrac-
tion and comparison of invariant features from the 3D face
template. In order to perform the 3D to 2D matching an al-
gorithm is used to generate a 2D view of the face which is as
close as possible to the given face image. Salient features are
extracted from the two face images and are used to determine
the similarity of the faces.

To simulate a real forensic environment, a small database
of 3D faces has been acquired. The dataset will be used to
test the identification performances in both cases.

1. INTRODUCTION

Over the last decade, there has been increasing interest in the
development of 3D face recognition algorithms leading to
great improvements in performance. 3D acquisition systems
are also becoming affordable, user friendly and easy to install
in different environments. For these reasons it is envisaged
that, in the near future, 3D face acquisition and matching can
be successfully employed in forensic applications as well.

There are different scenarios where three-dimensional
data can be acquired and used to identify criminals. We hy-
pothesize two possible cases:
• (3D to 3D) The three conventional face mug shots taken

from arrested criminals (frontal view, left and right pro-
files) are substituted with a full 3D representation of the
face. This can be obtained quickly with different imag-
ing devices at a relatively low cost. A 3D face is obtained
from a sequence acquired by a surveillance camera in the
crime scene. The two 3D faces are matched to identify a
suspect.

• (3D to 2D) As in the previous case, a 3D face represen-
tation is available from a list of suspects, but only a 2D
face image is available from the crime scene. The 3D
face representation of the suspect is used to generate a
synthetic 2D view of the face and perform the matching
with the face image taken from the crime scene.
In this paper two algorithms are described to match 3D

face shapes (3D to 3D) and also to compare a synthetically
generated 2D view with a given 2D face image (3D to 2D).

The proposed algorithm to match 3D shapes is based on
the extraction and comparison of invariant features from the
3D face template. In order to perform the 3D to 2D matching
an algorithm is used to generate a 2D view of the face which

is as close as possible to the given face image. A number of
salient features are extracted from the two face images. The
similarity of the two face images is determined by comparing
the two feature-based representations.

In order to reproduce the real operational environment for
forensic applications, a small database of 3D faces including
both geometrical and texture information has been acquired
using a high resolution 3D face scanner. The dataset is used
to test the identification performances in both cases.

2. 3D FACE DATA ACQUISITION

To simulate a real scenario two different data sets were ac-
quired:

• a 3D database of ten subjects consisting of one scan per
subject, acquired in a controlled environment, which we
will call the training set G

• a 3D database of the same subjects consisting of one scan
per subject, acquired at a subsequent time which we will
call the test set T3.

The 3D data sets have been acquired using the Vectra
System, which was specifically designed to acquire faces.
It is a structured light system (see figure 1) that consists of
two high resolution cameras to acquire texture, two struc-
tured light projectors, and four calibrated cameras spaced so
that in one acquisition they are able to capture the whole face
from ear to ear and forehead to neck. The acquisition speed is
about 0.2 milliseconds. Illumination does not need to be con-
trolled having the Vectra a build in automatic flashing light
system. The output is a 3D virtual model of the face that con-
sists of a mesh of about 8 · 104 points and texture. Figure 2
(left) shows a wireframe 3D scan of a subject, whereas figure
3 (right) shows a partial scan with texture.

Both for the training and the test set, we acquired one
scan of each of ten subjects, five males and five females. The
time interval between the training set acquisition and the test
set acquisition was about six months for six of the subjects,
and a few weeks for the others. Despite the subjects where
asked to pose with a neutral expression, there are notable
differences between the scans taken six months apart, mainly
caused by changes in weight.

To simulate a real scenario, a second test set was con-
structed. Scans of the 3D test set where manually altered to
simulate partial acquisition of subjects. The nose area was
always preserved whereas in two scans part of one eye was
cut, as it would happen in a 3/4 view. Generally, the number
of points of the scans was reduced by half, and in the case of
figure 3 up to 1/3. We will call this set the 3D modified test
set T3m.

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010   ISSN 2076-1465 1670



Figure 1: Vectratm 3D image acquisition system

Figure 2: (left) Sample 3D image used for training. (right)
3D image of the same person with a partial occlusion.

3. MATCHING ALGORITHMS

In this section the algorithms we implemented to perform
3D versus 3D recognition and 3D versus 2D recognition are
described.

In the first scenario we can assume to have a training
database consisting of 3D scans of faces and a 3D model of
one or more suspects. We will then compare the models to all
subjects in the database to recognise the suspects. Keeping
into consideration that the database can be large and con-
sist of highly resolution 3D scans (since many of them will
have been taken in a controlled environment), high speed of
comparison, minimal manual intervention and reliability are
highly desirable if not required. To meet these requirements,
we chose to use an algorithm specifically developed for 3D
face recognition which is totally automatic and reasonably
fast. Its reliability has been tested on a 3D face database
available to the scientific community (see [4]). For the sec-

Figure 3: (left) Sample 3D test image with occlusion. (right)
Same subject with texture mapped.

ond scenario, we choose a well known face image recogni-
tion algorithm based on SIFT [12]. In what follows we sum-
marise the algorithms and explain how we adapted them to
the forensic scenario.

3.1 3D to 3D Face recognition
Identification from 3D face data has been extensively stud-
ied, particularly based on shape matching. A 3D face recog-
nition system is usually based on four sequential steps: 1)
preprocessing of the raw 3D facial data, 2) registration of the
two faces, 3) feature extraction, and 4) matching [1]. As for
2D face identification, the 3D face must be first localized in
a given 3D image. However, as the available 3D face ac-
quisition devices have a very limited sensing range and the
acquired image usually contains only the facial area.

The developed system deploys 3D face data acquired
from a Vectra 3D imaging device. Although the acquired
3D scans contain both geometric (shape) and texture infor-
mation, shape alone is generally sufficient to produce reliable
matching scores. For this reason only the geometric informa-
tion of the scans, given in the form of clouds of points, has
been used. The standard approach to point cloud-based 3D
face recognition [13] has been applied: given two faces to be
compared, we first register them and then use the registration
error as a matching score.

The registration algorithm is based on the Moving Frame
Theory (for a thorough treatment of the theory see [14]).
Given a surface F , the Moving Frame Theory provides us
with a framework (or algorithmic procedure) to calculate a
set of invariants, say {I1, . . . In}, where each Ii is a real valued
function that depends on one or more points of the surface.
By construction, this set contains the minimum number of
invariants that are necessary and sufficient to parametrise a
“signature” S(I1, . . . , In) that characterizes the surface up to
Euclidean motion. The framework offers the possibility of
choosing the number of points the invariants depend on, and
this determines both the number n of invariants we get and
their differential order. The more the points the invariants
depend on the lower the differential order. For instance, in-
variants that are functions of only one point that varies on the
surface (I = I(p), p ∈ F) have differential order equals to 2,
and they are the classical Gaussian and Mean curvatures. To
compromise between computational time and robustness we
chose to build invariants that depend on three points at one
time. The result is a set of nine invariants, three of differen-
tial order zero, and six of order one.

3.1.1 3D Invariants based on point triples

Let p1, p2, p3 ∈ F and ni be the normal vector at pi. We
define r to be the direction vector of the line between p1 and
p2 and nt the normal to the plane through p1, p2, p3:

r =
p2− p1

‖p2− p1‖
and nt =

(p2− p1)∧ (p3− p1)
‖(p2− p1)∧ (p3− p1)‖

.

The zero order invariants are the 3 inter-point distances
Ik(p1, p2, p3) for k = 1,2,3:

I1 = ‖p2− p1‖, I2 = ‖p3− p2‖ and I3 = ‖p3− p1‖

whereas the first order invariants are

Jk(p1, p2, p3) =
(nt ∧ r) ·nk

nt ·nk
for k = 1,2,3
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Figure 4: Registration of two complete scans of the same
subject

and
J̃k(p1, p2, p3) =

r ·nk

nt ·nk
for k = 1,2,3.

To each triplet (p1, p2, p3) on the surface we can then as-
sociate a point of the signature in 9-dimensional space whose
coordinates are given by (I1, I2, I3,J1,J2,J3, J̃1, J̃2, J̃3).

3.1.2 Features extraction

Having calculated the invariants, we could use them to
parametrise a signature S and then compare the signature
with that of another scan to establish if the two surfaces are
the same up to Euclidean transformation. Unfortunately the
size of scans makes it impossible to calculate the invariants
for all triplets of points of the cloud. A face scan acquired
with the Vectra system can contain up to 8 ·104 points which
would lead to 83 · 1012 signatures points. We therefore ex-
tracted up to 10 feature points from the scan (i.e. points
that are invariant to Euclidean motions). To achieve this,
we opted to calculate the Gaussian curvature at each point
and find local maxima. Amongst these we selected up to 10
points with highest curvature as feature points. The curva-
ture at each pi ∈ F was calculated using PCA analysis on
the points of intersection between F and a ball B(pi,ρ) cen-
tered at pi and with radius ρ = 10r, where r is the average
resolution of F .

3.1.3 Registration and matching

Once the feature points from F are extracted we calculate the
invariants described on triples of them and save them into a
signature S that characterizes the scan. Given another scan
F ′ (we can think of it a test scan), we apply the same pro-
cedure to get a signature S′. At this point, all is left to do is
to compare the signatures. If S intersects S′ in a subset, then
there is a subset of feature points of the two scans that have
the same characteristics, i.e. same inter-point distances and
normal vectors (up to Euclidean motion). We therefore fix a
threshold σ and compare signature points with the Euclidean
distance: if s ∈ S, s′ ∈ S′ and |s− s′| ≤ σ then the triplets that
generated the signature points are considered to be a good
match and so we calculate the rototranslation (R,t) that
takes the second into the first. We then apply (R,t) to F ′ to
align it with F , and call the transformed match F ′′=RF ′+t.
Figures 4 shows the registration of two different scans of the
same subject. The neck misalignment reflects the different
pose of the subject in the two scans (it was leaning forward
when the red scan was acquired). Figure 5 shows a partial
scan of a subject registered with a full one.

To measure the registration error, we need to measure the
“closeness” of F ′′ to F . For each point qi ∈ F ′′ we find the

Figure 5: Registration of an occluded scan with a complete
one of the same subject

closest point pi in F and we save their Euclidean distance
di = ‖qi− pi‖. We get a set of distances D = {di}i∈I where
I is the cardinality of F ′′. Since we need to take into ac-
count that the test scans will not necessarily be taken under
controlled conditions and that the subject will most likely be
uncooperative they might fail to contain the whole face. For
instance, a hat can be worn or the hair or a scarf might cover
part of the face and so on. And this can be true also for train-
ing scans obtained from uncontrolled conditions. This means
that some of the di can be quite big even if the subject is the
same and the registration is accurate. In [4], experiments on
a large database showed that the median of D = {di}i∈I was
enough to eliminate such outliers and so measure the reg-
istration error of scans that overlap only partially. For this
reason we adopted it also in this context. In summary, given
two scans F , F ′, they are first registered and then the regis-
tration error e(F,F ′) is measured. It might happen that the
scans are so different that the registration step fails. In that
case, we will simply consider the result a negative match.

3.1.4 Experimental results

Two 3D face recognition tests were performed. For the first
test G was used as training set and T3 as test set. Each test
scan F ′i ∈ T3 was compared to all scans in G using the 3D
face recognition algorithm described in section 3.1 giving a
vector of scores si = (e1, . . . ,e10) where e j = e(F ′i ,Fj) is the
registration error between F ′i and Fj. Let em = min

j=1,...,10
{e j}.

Then F ′i is matched to Fm. Each subject in the test set was
matched to the right subject of the train set, giving a matching
score of 100%.

The second test was identical to the first one except in
the choice of the train set which was T3m. Despite heavy oc-
clusions in the test scans, we still obtained 100% recognition
rate.

These results are very promising, especially when using
occluded scans, which represent a more realistic scenario in
forensic contexts.

3.2 3D to 2D Face recognition
In the second scenario considered, 3D face data is acquired
for enrolment while 2D face images are used for identifica-
tion. This situation emulates the case of convicted criminals
whose 3D faces were acquired and stored, while 2D snap-
shots or a video clip is available from the the crime scene. In
this case the police officer should be able to identify the crim-
inal whose face is depicted in the captured image or video. In
most cases identification from images taken from a surveil-
lance camera is quite difficult because the face is often ro-
tated with respect to the camera.
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3.2.1 2D Database generation

Having 3D face data with texture allows to re-project face
images with any orientation and use these images to perform
the matching. The training set G2D consists of a series of 2D
projections of scans from the 3D training set G. These cor-
respond to 9 different head orientations, spaced 30 degrees
along the horizontal and vertical axes. The test set T2D is ob-
tained in an analogous way starting from the 3D test set T3
but projecting along 5 different directions.

3.2.2 2D Matching

The face matching algorithm is based on the comparison of
the Scale Invariant Feature Transform (SIFT) feature sets ex-
tracted from the images in the G2D and T2D datasets [11],
[12]. One of the interesting features of the SIFT approach
is the capability to capture the main gray-level features of
an object’s view by means of local patterns extracted from a
scale-space decomposition of the image.

The matching score between two images is computed, as
proposed in [11], by counting the number of similar SIFT
features.

As several views are projected for each subject, it is ex-
pected that the 2D projection corresponding to the closest
head orientation of the test image will produce the greatest
matching score.

3.2.3 Experimental results

The training and test images are first aligned and scaled ac-
cording to the positions of the eyes and the mouth manu-
ally located. To ensure the proper scale and position on
the 2D image plane a simple planar affine transformation is
adopted. Finally each test image is matched, as described
above, against all test face images. The training image with
the highest number of corresponding features is taken as
matching image.

As an example, six out of the total nine 2D projected
images of one subject are shown in figure 6. Two sample
test and training images from the same subject, with differ-
ent head orientations, are shown in figure 7. In figure 8 a test
and a probe registered images with similar head orientation
are shown on the top line and the extracted SIFT features are
shown in the bottom line. The genuine and impostor score
distributions, obtained by performing a complete matching
test on the acquired dataset, are shown in figure 9. The equal
error rate computed from the two distributions is equal to
4%. Considering the different projection directions between
the training and test images the obtained results are encour-
aging.

4. CONCLUSION

Face-based identification has been extensively used in foren-
sic applications. Generally 2D face images are captured both
from convicted criminals and in the scene of crime. As a
consequence standard 2D face matching techniques are de-
ployed.

In this paper we argue that 2D face images do not con-
vey enough information to perform automatically a reliable
matching of a test and training pair. Extremely different ac-
quisition conditions between the enrolment set-up and the
crime scene make it difficult to compare images from the

Figure 6: Sample 2D images obtained by projecting the 3D
texture mapped model.

Figure 7: (left) Projected image used for training. (right) 2D
image of the same subject used for testing.

Figure 8: Upper row: (left) sample 2D test face image,
(right) corresponding pose training face. Lower row: SIFT
extracted from the two images.
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Figure 9: Impostor and client score distribution computed
with the 3D to 2D matching using the SIFT features and us-
ing the global distance of the features.

same subject. Not only illumination and head pose are dif-
ferent, but even the camera position and view direction are
different. In fact, while mug shots are taken from criminals
with a camera directly looking at the subject’s face, the pic-
tures taken from the crime scene generally originate from
surveillance cameras which look at faces from above. For
these reason it seems reasonable to exploit the information
content of a full 3D face, at least for the enrolment phase.

In this paper two different forensic scenario have been
studied. In the former, a full 3D representation of the face
is acquired instead of the three conventional face mug shots
taken from arrested criminals. A 3D face is obtained from
a sequence acquired by a surveillance camera in the crime
scene. The two 3D faces are matched to identify a suspect. In
the latter scenario, a 3D face representation is available from
a list of suspects, but only a 2D face image is available from
the crime scene. The 3D face representation of the suspect is
used to generate a synthetic 2D view of the face and perform
the matching with the face image taken from the crime scene.

A compact 3D data set has been purposely acquired to
simulate the two scenarios. Both 3D to 3D and 3D to 2D
experiments have been performed producing good results. In
particular the best performances are obtained when match-
ing a 3D face model with a full 3D face, as expected. The
comparably lower performances obtained in the 3D to 2D
matching are presumably due to the small number of back-
projected gallery images used for matching. Increasing the
resolution in the head pose variations would certainly im-
prove the recognition results.

Even though the experiments have not been performed
on real data from a crime scene, both methods can be suc-
cessfully exploited in scenarios in which the quality of the
test images and 3D scans is affected by occlusions or poor
resolution.
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