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ABSTRACT
We consider using sparse simplifications to denoise probabilistic se-
quence models for generative tasks such as speech synthesis. Our
proposal is to find the least random model that remains close to
the original one according to a KL-divergence constraint, a tech-
nique we call minimum entropy rate simplification (MERS). This
produces a representation-independent framework for trading off
simplicity and divergence, similar to rate-distortion theory. Impor-
tantly, MERS uses the cleaned model rather than the original one
for the underlying probabilities in the KL-divergence, effectively re-
versing the conventional argument order. This promotes rather than
penalizes sparsity, suppressing uncommon outcomes likely to be er-
rors. We write down the MERS equations for Markov chains, and
present an iterative solution procedure based on the Blahut-Arimoto
algorithm and a bigram matrix Markov chain representation. We ap-
ply the procedure to a music-based Markov grammar, and compare
the results to a simplistic thresholding scheme.

1. INTRODUCTION

In machine learning, an interesting duality exists between discrimi-
native tasks such as speech recognition, and generative tasks such as
speech synthesis. Both can be seen as mappings between observa-
tion space and model space, but in opposite directions. Generative
and discriminative tasks alike can be addressed using so-called gen-
erative models, of which Markov chains and hidden Markov mod-
els (HMMs) [1] are common examples. Hidden Markov models,
in particular, are used in modern systems for speech recognition as
well as speech synthesis [2, 3].

However, just because the same model family can be applied
for generative and discriminative problems, it does not follow that
the exact same model will be optimal in both cases. On the con-
trary, the practical requirements for a good model typically differ
between the two applications, so what is optimal in one case need
not be the best strategy in the other; see [4]. While the problem
of adapting models to increase recognition performance has been
widely studied [5, 6, 7, 8], we will consider the converse task of
improving models for purposes of sampling and synthesis. To this
end, we propose minimum entropy rate simplification (MERS), a
rate-distortion like framework for simplifying and sparsifying esti-
mated probability models for stochastic sequences, removing noise
and errors inherited from the training data.

The paper is laid out as follows: section 2 describes the bene-
fits of sparse, simplified generative models. We then introduce and
discuss the general MERS framework in section 3. Thereafter, in
section 4, we describe the concrete optimization problem that arises
in the special case of Markov chains, present a solution algorithm,
and apply it to a simple music grammar. Section 5 then rounds off
with conclusions and suggestions for future work.

2. BACKGROUND

As an example of the different requirements in discriminative ver-
sus generative settings, we shall consider the dual topics of speech
recognition and speech synthesis. In both cases, the typical ap-
proach to learning revolves around one or more generative mod-

els trained on human speech data, often using a maximum likeli-
hood estimation technique such as Baum-Welch training for hidden
Markov models [9], a special case of the EM-algorithm [10]. How-
ever, after the training stage, paths diverge [4].

2.1 Discriminative Tasks and Smoothing
For recognition tasks, it is common practice to apply some kind of
smoothing to ML-estimated models [7], which increases the amount
of randomness and number of possible outcomes. This is to allow
for the vast variety of different behaviours present in real, spon-
taneous speech, which is typically much greater than the training
data can represent [11]. Additive smoothers, including pseudocount
methods such as Laplace’s rule, are a common choice, though many
alternatives exist, e.g., [6, 8]. Pseudocounts are often motivated and
interpreted as a Bayesian prior.

The net result of smoothing is to increase the probability of rare
events, and assign small, nonzero probabilities to events previously
deemed impossible by the model. Were this not done, many erro-
neous or simply unusual constructs that tend to occur in the real
world may have probability zero under the unsmoothed maximum
likelihood model [11]. These zeroes are known to be problematic
and degrade practical performance: for example, if only grammat-
ically correct interpretations of speech have nonzero probabilities,
any grammatical mistake by the speaker might make recognition
impossible.

2.2 Generative Tasks
In the case of speech synthesis and other generative tasks, the sit-
uation is the opposite to the above: one would like to decrease
rather than increase the room for errors in samples from the model.
This would reduce the importance of occasional idiosyncrasies in
the training data and generally filter out unlikely and uncharacteris-
tic behaviour, such as grammatically incorrect speech, that the ini-
tially estimated model might still allow. These mistakes and un-
predictable behaviours are generally undesirable from a commu-
nication standpoint in a practical speech synthesis system, even if
removing them makes the model in some sense less realistic.

As another example, we may consider synthesizing species-
specific birdsong. A training dataset of field recordings may not
always be clean, but could include background sounds and occa-
sional interference from other singing birds. By reducing the range
of behaviours that can be expressed by the model, more consistent
output may be obtained, where disturbances from the training ma-
terial are eliminated or suppressed.

In both examples above we presume errors to be inherent to the
data process rather than a finite sampling effect. This is a situa-
tion where Bayesian approaches such as [12]—which in terms of
objective is quite similar to our MERS proposal—are not directly
applicable, since the impact of the Bayesian prior decreases with an
increasing amount of data.

2.3 Sparsity
We have described the need for simplifying stochastic processes so
that uncommon, uncharacteristic behaviour is removed or reduced.
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The result could be seen as a sort of caricature of the original pro-
cess, exaggerating the most prominent features, or we may con-
sider it a “sharpening,” in the sense that it has the opposite effect
of smoothing. However, it can also be considered a kind of spar-
sification of the model output—we want to decrease the number of
possible outcomes and reduce the size of the typical set. In many
model classes where parameters can be interpreted as probabilities,
including Markov chains and HMMs, this directly carries over to
imply sparsity in model parameter space, though not all models may
admit such an interpretation.

Sparse representations, in general, is a topic area that has seen
much recent interest. Well-known techniques such as least angle re-
gression (LARS/Lasso) [13, 14], support vector machines [15], and
the wavelet paradigm in signal processing [16] can all be consid-
ered examples of sparse approaches. Methods for obtaining sparse
probability models have also been addressed before, e.g., [17], but
this does not apply to stochastic processes that are not i.i.d., as con-
sidered here.

General advantages of sparse representations include that they
compress easily [16], may be faster to process [18], and tend to be
more amenable to human interpretation [13, 12]. In general, sparse
representations echo the principle of Occam’s razor that “plurality
should not be posited without necessity.”

Though explicit constraints provide one route to sparsity, e.g.,
[19], sparsity in several of the methods above emerges as a natu-
ral by-product of their construction. A classic example of emergent
sparsity is reverse water-filling in source coding, where, in optimal
coding of stationary stochastic Gaussian processes, certain frequen-
cies (or variables in the discrete case) are omitted completely from
the compressed description [20, 21]. This will serve as the model
for our efforts for identifying sparse simplifications of stochastic
processes.

3. RATE-DISTORTION SIMPLIFICATION

We shall now adapt the rate-distortion framework from source cod-
ing to the task of simplifying stochastic processes, which yields the
MERS framework. This will involve a brief discussion of traditional
rate-distortion theory and how it applies to our problem, after which
we describe how to select suitable analogues of rate and distortion
for stochastic processes. In section 4, we shall then consider the
important special case of a Markov chain.

3.1 Rate-Distortion Theory
Let X be a stochastic variable with known, fixed distribution FX (x),
and let X̂ be some approximation of X reconstructed from partial
information about X . In our particular application, these variables
will be stochastic processes, and we aim to find a simple underlying
X using the incomplete information available through the disturbed
observations X̂ .

Rate-distortion theory in lossy source coding concerns the
trade-off between the rate R = I(X , X̂) (the average number of
bits transmitted) and the expected distortion of the signal given the
transmitted information. The latter is quantified through a distor-
tion measure D(x, x̂)≥ 0, with equality if x̂ = x. The goal of source
coding is to choose a distribution FX̂ |X (x̂ | x) for X̂ that strikes an
optimal balance between the contradictory objectives of low aver-
age rate (simplicity) and low mean distortion (dissimilarity). Cod-
ing can thus be seen as a simplification scheme, similar to what we
want to derive.

By constraining either rate or distortion, the other variable can
be minimized. It does not matter which is fixed; using Lagrange
multipliers, both approaches can be recast as unconstrained mini-
mization of a weighted functional, as in

min
FX̂ |X (x̂|x)

I(X , X̂)−βEFX (x)D(X , X̂). (1)

The minima over the range of Lagrange multipliers β ≥ 0 define
a convex, nonincreasing rate-distortion function D(R) which lower

bounds compression performance for a given distribution FX (x);
only rate-distortion pairs (R, D) on or above the curve are achiev-
able.

The balance between rate and distortion above can be adjusted
continuously through the variable β . Similar information-theoretic
trade-offs recur in, for instance, the opposing forces of relevance
and compression within the information bottleneck framework [22],
and the semi-supervised CRF learning framework in [23]. We shall
let a trade-off of the same form as above define our model simpli-
fication scheme, by studying the rate and distortion components in
turn, arguing for natural generalizations that produce sparse simpli-
fications.

3.2 Rate Minimization
Let X̃t and Xt for t ∈ Z be strictly stationary and ergodic stochastic
processes over a space X . X may be either discrete or contin-
uous. We will take the properties of X̃t to be known and fixed—
typically, this is a model with parameters estimated from possibly
impure training data—and seek a suitable Xt , a cleaned version of
the X̃t -process that strikes an optimal balance between simplicity
and similarity.

We want Xt to be a simplification of X̃t where rare events are re-
moved or generally de-emphasized. Intuitively, the fewer outcomes
that are possible, the less random the output becomes, a notion for-
malized by the classic entropy concept. To obtain an optimally sim-
ple stochastic process Xt , it thus appears sensible to minimize the
entropy rate of the model as

H∞ (Xt) = lim
T→∞

1
T

H (Xt ,Xt+1, . . . ,Xt+T−1) , (2)

or the analogous differential entropy rate

h∞ (Xt) = lim
T→∞

1
T

h(Xt ,Xt+1, . . . ,Xt+T−1) (3)

if X is not discrete. These are parameter-independent information-
theoretic measures of disorder, with units of bits, nats or similar,
depending on the logarithm used to define the entropies.

The lower the entropy rate, the more predictable a process be-
comes, and on average only a few outcomes will have any appre-
ciable probability. The extreme points where the rate is identically
zero correspond to processes that, with probability one, are com-
pletely deterministic once a single sample is known (and are thus
not necessarily ergodic).

We note that the entropy of a general stochastic variable is a
concave function over the unit simplex with minima at the corners.
Thus algorithms minimizing the entropy rate, as we wish to do for
Xt here, might converge on points that are not globally optimal. This
is not necessarily a grave concern—methods such as hidden Markov
models work well in practice despite the fact that the training algo-
rithms are not certain to find global optima.

3.3 Distortion Constraint
In rate-distortion theory, a low rate is balanced against the undesir-
able distortion it induces in the reconstructed variable X̂ . To prevent
oversimplification, we similarly want to ensure that the difference
between Xt and the measurements X̃t is not too great, according to
some appropriate measure of distortion. Selecting this distortion
measure is not as straightforward as minimizing the rate.

The classic case of reverse water-filling with Gaussian variables
occurs for the squared error distortion function d (x, x̂) = ‖x− x̂‖2

2,
but this measure is parameterization dependent and not even defined
for categorical variables. Instead, we describe an approach involv-
ing the Kullback-Leibler divergence, or relative entropy, which in
the discrete case has the form

DKL (P||Q) = ∑
i

pP (i) log
pP (i)
pQ (i)

, (4)
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given random variables P and Q.
This is an information-theoretic error measure that also is

parameterization-independent, and has been used in other frame-
works inspired by rate-distortion theory such as the information bot-
tleneck approach.

To properly adapt the KL-divergence for our purposes, we must
keep in mind the different roles of the two arguments P and Q. In
many applications, the divergence DKL (P||Q) is interpreted as the
mean reduction in per-symbol log-likelihood that occurs when us-
ing the probability model Q, compared to the true sample distribu-
tion P. In source coding, this equals the average excess number of
bits, nats, or similar, consumed when coding the variable P using
a code optimal for Q. Commonly, then, the argument P represents
the fixed, actual distribution of the data (known or inferred from ob-
servations), while Q is some approximation thereof. This strongly
discourages sparsity in Q—in source coding, for instance, it is vital
that nonzero probability symbols all have finite length codewords—
so care must be taken not to rule out sparse output when using this
divergence.

In our case, a different understanding of what constitutes P and
Q is appropriate, compared to many other applications. We consider
the observations from X̃t as a corruption, a noisy approximation of
some clean underlying process Xt , for example birdsong or gram-
matically correct speech. Hence it makes sense to reverse the con-
ventional ordering and constrain the limiting relative entropy rate
D∞

KL(Xt ||X̃t) defined through

lim
T→∞

1
T

DKL((Xt , . . . ,Xt+T−1) ||(X̃t , . . . , X̃t+T−1)), (5)

or the analogous differential entropy rate for continuous-valued pro-
cesses. We shall assume these quantities exist, which is assured if
the processes are Markovian [24]. Another notable example where
the second argument in the KL-divergence is considered fixed in-
stead of the first one is variational Bayesian inference [25].

Constraining D∞
KL(Xt ||X̃t) represents a belief that short se-

quences from the underlying Xt are not too unlikely to be ob-
served in X̃t unaltered. This harshly punishes needless non-sparsity;
any Xt -process which has additional nonzero probability outcome
sequences compared to the observations X̃t will incur an infinite
penalty. Excess sparsity in Xt , so that Ω(Xt) ⊂ Ω(X̃t), leads to a
more modest, finite divergence.

3.4 Method Overview
Summing up the reasoning above, we propose to find a simplified,
sparse model Xt of a process X̃t by solving the optimization problem

min
Xt∈Ξ

H∞ (Xt) (6)

subject to
D∞

KL(Xt ||X̃t)≤ D, (7)

where D is a free parameter and Ξ is a class of stationary, ergodic
discrete-time models. We take appropriate differential entropies and
divergences if the outcome set X is not discrete. Note that this
reduces to a problem from regular rate-distortion theory if the pro-
cesses considered are i.i.d.

Just as in rate-distortion theory and the information bottleneck
framework, the opposing goals of low rate and low distortion in
the problem enable a continuous trade-off between the original esti-
mated process X̃t and complete determinism at zero rate, controlled
by the tolerable distortion D. The different possible optima trace out
a nonincreasing rate-distortion function R(D). From a variational,
information-theoretic perspective, the optimal Xt is determined by
trading bits of increased order for bits of divergence at the exchange
rate specified by the Lagrange multiplier β corresponding to the
constraint (7).

A practical issue with rate-distortion theory is that few closed-
form solutions have been found. Many of these are available in

[26, 21]. Sometimes, fundamental quantities such the entropy rate
(6) may be difficult to write down explicitly, for instance if Xt is a
hidden Markov process [27]. Nevertheless, there are many impor-
tant cases where this is not a problem. A particularly useful example
is the class of stationary and ergodic Markov chains, which we will
consider next.

4. SPARSE MARKOV CHAINS

We have presented a general, abstract rate-distortion problem for
simplifying probability models, with the intent of eliminating noise
and disturbances for sampling applications. To get a more concrete
impression of how the MERS framework operates, we shall now
address how it applies to a simple example, namely that of ordinary
Markov chains. We write down the explicit optimization problem
that results for this particular case, present an iterative solution al-
gorithm, and demonstrate sparsity in an application.

4.1 Optimization Problem Formulation

Let M̃t be a given stationary, ergodic first-order Markov chain on an
alphabet A of cardinality N < ∞, defined by the transition proba-
bility matrix Ã ∈ [0,1]N×N such that

(ã)i j = P(M̃t+1 = j | M̃t = i) (8)

for all i, j ∈ A . Given Ã, the process has a unique stationary dis-
tribution π̃ ∈ [0,1]N such that (π̃)i = P(M̃t = i), which solves the
eigenvector equation ÃT π̃ = π̃ . We shall require π̃ > 0 (meaning
that all elements are greater than zero), else some symbols in A are
not emitted and can be removed from consideration.

Now let Mt be another stationary, ergodic first-order Markov
chain on A . Instead of the transition matrix A, we let Mt be defined
by its bigram probability matrix B with elements

(b)i j = P(Mt = i ∧Mt+1 = j). (9)

The stationary distribution vector π is again required to have all
positive elements and satisfies π = B1 = BT 1 due to stationarity,
where 1 is a column vector of all ones. It is possible to transform
this back to a regular transition-matrix representation using the re-
lation

B = (diagπ)A. (10)

With the above definitions, the minimum-rate simplification Mt
of M̃t for a given Kullback-Leibler distortion D is the solution to the
optimization problem

min
B∈[0,1]N×N

−∑
i, j

(b)i j log
(b)i j

∑ j′ (b)i j′
(11)

subject to

∑
i, j

(b)i j log
(b)i j

(ã)i j ∑ j′ (b)i j′
≤D (12)(

B−BT
)
1 =0 (13)

1T B1 =1 (14)
B≥0. (15)

Equations (11) and (12) are Markov chain versions of (6) and (7),
respectively, derived using the formulas in [28]. The two final con-
straints are required for B to describe a proper probability distribu-
tion, while the relation (13) between the marginals of B is necessary
to obtain a stationary process.
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Figure 1: Simplicity-Divergence Curve

4.2 Iterative Solution
The MERS problem above is nonconvex and typically demanding to
solve using brute force numerical minimization techniques. How-
ever, it is possible to derive fast iterative solution procedures, anal-
ogous to the Blahut-Arimoto [29, 30] for calculating points on the
rate-distortion curve in rate-distortion theory. We introduce an aux-
iliary variable q = B1 and interlace iterative optimization of B and
q. Given a parameter α > 1, a counter m = 0, and an initial guess
B(0) satisfying the above constraints for B, this yields an algorithm:
1. Given B, optimize for q: q(m) = B(m)1.
2. Given q, optimize for B:

(a) Define B′(m+1) through (b′)(m+1)
i j = (ã)α

i j (q)(m)
i .

(b) Let n = 0 and µ(n) = 1.

(c) Let (µ)(n+1)
i =

√
∑

N
j=1, j 6=i(µ)(n)

j (b′)(m+1)
ji

∑
N
j=1, j 6=i

(
(µ)(n)

j

)−1
(b′)(m+1)

i j

.

(d) Let n = n+1 and repeat from 2c until convergence.

(e) Form B′′(m+1) =
(

diag µ(n)
)−1

B′(m+1)
(

diag µ(n)
)

.

(f) Normalize to get B(m+1) =
(
1T B′′(m+1)1

)−1
B′′(m+1).

3. If not converged, let m = m+1 and repeat from 1.
This algorithm can be derived by introducing a Lagrange multiplier
for the divergence constraint (12), and then splitting the problem
into a minimization problem over two sets of variables, B and q
(representing π) using the same trick as for the Blahut-Arimoto al-
gorithm. Minimizing over one parameter set is straightforward if
the other set is fixed, leading to an alternating minimization scheme
as above. The inner loop at 2c provides an iterative solution to an
equation of the form

(diag µ)−1 B′ (diag µ)1 = (diag µ)B′T (diag µ)−1 1, (16)

which is necessary to find Lagrange multipliers µ so that constraint
(13) is satisfied. While we have no formal convergence guarantees,
the algorithm converges quickly in practice. Because of nonconvex-
ity, the obtained solutions are not necessarily globally optimal.

We note that only B-matrix entries where the corresponding
value in Ã is nonzero need to be considered for the computations;
all other entries are zero at the optimum. The parameter α in the
algorithm adjusts the trade-off between simplicity and divergence.
To achieve a target entropy or divergence rate, it may be necessary
solve the problem for several different α , and use a root-finding
procedure to converge on the appropriate value. This is a common
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trait of the Blahut-Arimoto algorithm and its descendants such as
the bottleneck equations in the information bottleneck method [22].

4.3 Numerical Example

To illustrate the behaviour of MERS in practice we present a brief
numerical example from the domain of music. A process M̃t was
created by first extracting the pitch sequences from the Bach chorale
data described in [31]. Taking differences between consecutive el-
ements in each chorale, sequences of pitch changes were obtained;
these were wrapped onto a single octave using modulo 12. An
eleven-state Markov chain M̃t was then fitted to the resulting data
using maximum likelihood. (Only eleven states were necessary
since there were no instances of six-semitone pitch increases.) This
music model was then simplified using MERS for a number of dif-
ferent α-values, yielding the results shown.

Figure 1 graphs the high and medium rate sections of the
simplicity-divergence curve, the MERS analogue of the rate-
distortion curve, for this example. Simplicity and divergence are
here defined by equations (11) and (12), respectively. (The low en-
tropy region of the curve is omitted since the calculation of µ is
slow there.) The curve is smooth and reflects the law of diminish-
ing returns: near full rate, we can take away some variation with
little effect on divergence, but as entropy rate is decreased further
the removed bits (or fractions thereof) carry progressively greater
importance.

For comparison, the figure also includes the performance of a
simplistic thresholding scheme, where all the probability mass in Ã
below a certain threshold is removed. The threshold is different for
every row, such that that an equal mass p is removed from each row;
the matrix is then renormalized by dividing by 1− p. Evidently,
this reverse water-filling-like scheme achieves inferior simplicity-
divergence trade-offs as the parameter p is varied, compared to the
MERS curve.

Figure 2 illustrates progressively increasing sparsity as the rate
is decreased. The lines correspond to the entries of the matrix B
ordered by decreasing magnitude for a number of different entropy
rates. As H∞ (Mt) goes down, only a few bigrams have increased
probability, whereas most matrix entries (typically corresponding
to less common two-note sequences) approach zero at an increasing
pace and rapidly become insignificant. This sparse B-matrix rep-
resentation corresponds to sparsity and simplicity in outcome space
for Mt , as desired; at low rate, only relatively few, highly typical
sequences tend to be observed in practice.
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5. DISCUSSION AND CONCLUSIONS

We have presented MERS, a rate-distortion based framework for
simplifying stationary, ergodic stochastic processes, including the
special case of Markov chains. The framework revolves around
minimizing entropy rate under a Kullback-Leibler divergence con-
straint designed to promote sparsity in outcome space, so that only
a few outcomes have any appreciable probability. Numerical exper-
iments confirm this behaviour.

MERS simplifications are similar to reverse water-filling in
source coding in the sense that less prominent aspects of the origi-
nal distribution are filtered out. This is particularly appropriate for
improving models for generative tasks, and may recover an approx-
imation of the underlying sparsity structure from models disturbed
by imperfections and occasional erratic outcomes.

A distinguishing advantage of MERS is that the information-
theoretic nature of the framework ensures wholly parameterization
independent results. This contrasts with many typical approaches to
sparsity such as thresholding schemes or Lasso-influenced methods,
e.g., [17], that rely on constraining or minimizing the `1-norm of the
model parameters.

We see room for future work in both theory and applications.
On the theory side, we intend to explore fundamental aspects of
the proposed framework in greater depth, such as the properties of
the MERS rate-distortion function and the emergence of sparsity.
For applications, we are pursuing analytic solutions to the MERS
problem for some important special cases. This should open the
door to apply MERS to potentially large problems in a number of
different contexts.

In the case of more general processes such as hidden Markov
models, merely computing entropy rates can be a difficult problem
[27], and analytic solutions may not be possible. It would be in-
teresting to consider minimizing suitable upper bounds on the en-
tropy and divergence rates, which could produce approximate rate-
distortion simplifications while being computationally feasible.
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