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ABSTRACT

Compressed sensing samples signals at a much lower
rate than the Nyquist rate if they are sparse in some
basis. Using compressed sensing theory to reconstruct
speech signals was recently proposed, assuming speech
signals are sparse in the excitation domain if they are
modelled using the source/filter model. In this pa-
per, the compressed sensing theory for sparsely ex-
cited speech signals is applied to the specific problem
of speaker identification, and is found to provide en-
couraging results using a number of measurements as
low as half of the signal samples. In this manner, com-
pressed sensing theory allows the use of less samples to
achieve accurate identification, which in turn would be
beneficial in several sensor network related applications.
Additionally, enforcing sparsity on the excitation signal
is shown to provide identification accuracy which is more
robust to noise than using the noisy signal samples.

1. INTRODUCTION

Speaker identification is the task of determining an
unknown speaker’s identity. In this paper, text-
independent speaker identification is performed based
solely on a speaker’s voice. Speaker identification is
achieved by performing a one-to-many match among
the unknown voice signal and the previously available
speech database of multiple speakers, assuming that the
unknown speaker belongs in this dataset. The paper
focuses on the possibility of performing speaker identi-
fication by applying the recently-proposed compressed
sensing theory.

Compressed sensing (CS) [1–3] seeks to represent
a signal using a small number of linear, non-adaptive
measurements. Usually the number of measurements is
much lower than the number of samples needed if the
signal is sampled at the Nyquist rate. Thus, compressed
sensing combines compression and sampling of a signal
into one low-complexity step. An important restriction
is that compressed sensing requires that the signal is
sparse in some basis—in the sense that it is a linear
combination of a small number of basis functions—in
order to correctly reconstruct the original signal.

The reasons for examining the applicability of com-
pressed sensing theory to the speaker identification
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problem are twofold. Firstly, compressed sensing the-
ory achieves the reconstruction of a sparse signal using
only a fraction of the number of samples dictated by the
Nyquist theorem. Therefore, in a sensor-network sce-
nario, the measurement operation could be performed
locally and the few measurements in each time frame
could be transmitted to a base station for further pro-
cessing. From a different point of view, the second rea-
son is due to the aforementioned sparsity restriction: by
forcing the signal to be sparse in some basis, a noisy
signal may be more robustly reconstructed. This is sim-
ilar to signal denoising by low-rank modelling. In this
case, the signal sparsity is an important factor, since the
CS reconstruction will only be valid for signals which are
initially sparse in some domain. Thus, in this second ap-
proach, we are interested in testing whether compressed
sensing-based speaker identification results in a more ro-
bust identification than when directly using the signal’s
samples to perform the identification.

A key question is whether a speech signal can be
considered to be sparse in some sense. For audio sig-
nals, we recently showed that their sinusoidally mod-
elled component can be considered to be sparse, and
compressed sensing theory was applied to low-bitrate
audio coding [4]. For speech signals, compressed sens-
ing was recently applied to a sparse representation us-
ing the source/filter model in [5] for speech coding, and
encouraging preliminary results were obtained. In this
paper we extend the work of [5] by applying the pro-
posed methodology to the problem of text-independent
speaker identification. In that work, it was found that
applying compressed sensing theory to speech signals
modelled using the source/filter model, and assuming
a sparse excitation, resulted in accurate estimation of
the filter part (spectral envelope) of the speech signal.
For the filter part, a codebook for the speaker was used.
Consequently, in this paper we create a filter codebook
for each of the speakers in the database, and the identi-
fication process is based on selecting the speaker in the
database corresponding to the codebook that results in
the best compressed sensing reconstruction. It is shown
that the percentage of correct identification using com-
pressed sensing theory can reach 80% on average using
a number of measurements which are as low as half of
the signal’s samples. When additive noise is used, the
performance of compressed sensing-based identification
is shown to be quite robust, with reference to a baseline
GMM-based approach [6] for this task.

It is relevant at this point to mention the work in [7],
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where compressed sensing is used in the same context of
the source/filter model, in order to derive a sparse resid-
ual for speech signals, when their filter part is known. In
that case, the signal is sampled at the Nyquist rate (so
as to derive the filter part), and the use of compressed
sensing is to derive a sparse excitation signal as an al-
ternative to multi-pulse excitation coders. In contrast,
in this paper (as in [5]), the signal is in fact sampled at a
rate which is significantly smaller compared to Nyquist,
and consequently the codebook for the filter part is nec-
essary in order to perform the CS-based reconstruction.

The proposed work mainly examines the applicabil-
ity of CS-based reconstruction to speaker identification
due to the advantage of sub-Nyquist sampling. At the
same time, the fact that this method is shown here to be
noise-robust, relates to previous work on feature extrac-
tion for robust speaker identification. A great amount
of research efforts has focused on deriving robust fea-
tures from the noisy speech signals, which can then be
used for improving speaker identification performance as
in [8–11]. Alternatively, the noise robust speaker identi-
fication problem can be examined as a problem of mis-
matched testing and training conditions as in [12,13].

The remainder of the paper is organized as follows.
In Section 2, the basics of compressed sensing are re-
viewed. In Section 3, the compressed sensing method-
ology for sparsely excited speech signals of [5] is sum-
marized. Section 4 presents our approach on speaker
identification using the compressed sensing reconstruc-
tion for sparsely excited speech signals. Identification
results are given in Section 5, and concluding remarks
are given in Section 6.

2. COMPRESSED SENSING

We sample the speech signal x(t) at the Nyquist rate
and process it in frames of N samples. Each frame is
then an N × 1 vector x, which can be represented as

x = ΨX, (1)

where Ψ is an N × N matrix whose columns are the
similarly sampled basis functions Ψi(t), and X is the
vector that chooses the linear combinations of the basis
functions. X can be thought of as x in the domain of Ψ,
and it is X that is required to be sparse for compressed
sensing to perform well. We say that X is K-sparse if
it contains only K non-zero elements. In other words,
x can be exactly represented by the linear combination
of K basis functions.

It is also important to note that compressed sensing
will also recover signals that are not truly sparse, as long
these signals are highly compressible, meaning that most
of the energy of x is contained in a small number of the
elements of X.

At the sensor, we take M non-adaptive linear mea-
surements of x, where K < M < N , resulting in the
M ×1 vector y. This measurement process can be writ-
ten as

y = Φx

= ΦΨX,

where Φi is an M × N matrix representing the mea-
surement process. For compressed sensing to work, Φ

and Ψ must be incoherent. Incoherent means that no
element of Φ has a sparse representation in terms of the
elements of Ψ. In order to provide incoherence that is
independent of the basis used for reconstruction, a ma-
trix with elements chosen in some random manner is
generally used. Thus unlike Ψ, which is constant, Φ
will change every frame.

Once y has been obtained, it is transmitted in some
fashion to a processor, where it is processed by a re-
construction algorithm. Reconstruction of a compressed
sensed signal involves trying to recover the sparse vector
X. It has been shown [1,2] that

X̂ = argmin ‖X‖1 s.t. y = ΦΨX, (2)

will recover X with high probability if enough measure-
ments are taken. In general, the �p norm is defined as

‖a‖p =

⎛
⎝∑

j

|aj |p
⎞
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1
p

.

Equation (2) can be reformulated as

X̂ = argmin
X

‖y−ΦΨX‖2 s.t. ‖X‖0 = K, (3)

where the �0 norm, ‖a‖0 just counts the number of non-
zero elements in a.

There are a variety of algorithms to perform the re-
constructions in (2) and (3), in this paper we make use
of orthogonal matching pursuit (OMP) [14] to solve (3).
OMP is a relatively-efficient iterative algorithm that
produces one component of X̂ each iteration, and thus
allows for simple control of the sparsity of X̂. As the
true sparsity is often unknown, the OMP algorithm is
run for a pre-determined number of iterations, K, re-
sulting in X̂ being K-sparse.

3. SPARSELY-EXCITED SPEECH

The speech model used in [5] is based on the Nyquist-
sampled speech sample sequence x(n) being represented
by the convolution relation

x[n] = h[n] ∗ r[n], (4)

where h[n] is the signal domain impulse response of the
smooth spectral envelope (which in this paper is repre-
sented using the Linear Prediction Coefficients - LPC),
and r[n] is the residual excitation component. The con-
volution relation of (4) can be expressed in frame-by-
frame matrix form as

x = hr, (5)

where h is an N×N impulse response matrix and r is an
N×1 excitation vector. We consider linear convolution,
and thus h is Toeplitz lower triangular.

The residual excitation vector is not truly sparse, as
for real speech all of the elements of r will be non-zero.
However, the work of [5] showed that r is indeed highly
compressible, and thus (5) is a suitable representation
of speech for use with compressed sensing.
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So substituting h and r into (3) for Ψ and X respec-
tively, we obtain

r̂ = argmin
r

‖y−Φhr‖2 s.t. ‖r‖0 = K (6)

Unfortunately, the basis matrix h is signal-dependent,
and the authors of [5] solve this problem by construct-
ing a codebook of L basis matrices from training speech
data. Given that h is formed by the LPC coefficients of
the speech signal, L is in fact the codebook size formed
using the LPC vectors, represented as Line Spectral Fre-
quencies (LSFs).

By performing the compressed sensing reconstruc-
tion over the codebook, the complexity is linearly scaled
by L, and (6) becomes

ĥl, r̂ = argmin
hl,r

‖y−Φhlr‖2 s.t. ‖r‖0 = K, (7)

where l = 1, 2, . . . , L.

4. SPEAKER IDENTIFICATION

4.1 GMM Speaker Identification

As a baseline, we implemented the speaker identifica-
tion system of [6], which is a simple but powerful sys-
tem that has been shown to successfully perform this
task. This is a GMM-based system, where for each
one of the speakers in the database, a corpus is used
to train a GMM model of the extracted sequences of
(short-time) spectral envelopes. Thus, for a predefined
set of speakers a sufficient amount of training data is
assumed to be available, and identification is performed
based on segmental-level information only. During the
identification stage, the spectral vectors of the examined
speech waveform are extracted and classified to one of
the speakers in the database, according to a maximum
a posteriori criterion. More specifically, a group of S
speakers in the training dataset is represented by S dif-
ferent GMM’s λ1, λ2, . . . , λS , a sequence (or segment)
of n consecutive spectral vectors X = [x1x2 · · ·xn] is
identified as spoken by speaker ŝ based on:

ŝ = arg max
1≤q≤S

p(λq|X) = arg max
1≤q≤S

p(X|λq)p(λq)

p(X)
. (8)

For equally likely speakers and since p(X) is the same
for all speaker models the above equation becomes

ŝ = arg max
1≤q≤S

p(X|λq), (9)

and finally, for independent observations and using log-
arithms, the identification criterion becomes

ŝ = arg max
1≤q≤S

n∑
k=1

log p(xk|λq), (10)

where

p(xk|λq) =
M∑
i=1

pq(ωi)N (xk;µi,q,Σi,q), (11)

where N (x;µi,Σi) denotes a Gaussian density with
mean µi and covariance Σi. Note that this is a text-
independent system, i.e. the sentences during the val-
idation stage need not be the same as the ones used
for training. As in [6], the error measure employed is
the percentage of segments of the speech recording that
were identified as spoken by the most likely speaker. A
segment in this case is defined as a time-interval of pre-
specified duration containing n spectral vectors, during
which these vectors are collectively classified based on
(10), to one of the speakers by the identification sys-
tem. If each segment contains n vectors (n depending
on the pre-specified duration of each segment), different
segments overlap as shown below, where Segment #1
and Segment #2 are depicted:

Segment #1︷ ︸︸ ︷
x1,x2, . . . ,xn,xn+1,xn+2, · · ·

x1,

Segment #2︷ ︸︸ ︷
x2, . . . ,xn,xn+1,xn+2, · · ·

The resulting percentages are an intuitive measure of
the performance of the system. There is a performance
decrease when decreasing the segment duration, which
is an expected result since the more data available, the
better the performance of the system. A large number
of segments is also important for obtaining more accu-
rate results; it should be noted, though, that an iden-
tification decision is made for each different segment,
independently of the other segments.

4.2 Speaker Identification Using CS

In order to perform speaker identification using com-
pressed sensing, we propose forming a codebook of ba-
sis matrices from speech training data for each of the
S speakers that we wish to identify. This is essentially
formed by performing a codebook of the LSF vectors of
each speaker separately. This process is in fact similar
to the GMM training for speaker identification, and is
based on the assumption that LSF’s are suitable feature
vectors for the classification task.

A simple way to do classification using compressed
sensing is to find a basis for each of the C classes of
interest, and then reconstruct a sparse vector from each
of the class bases. The measured signal is then said to
come from the class that produced the sparsest recov-
ered vector. This can work well, but requires that the
class bases be incoherent.

In our case, the class bases would be the hl’s for
each speaker. Unfortunately these bases are far from
incoherent. We thus need to find another method to
perform speaker identification, and we proceed in the
following manner.

We first find a residual excitation vector for each
basis matrix from each speaker’s codebook using

r̂s,l = argmin
r

‖y−Φhs,lr‖2 s.t. ‖r‖0 = K. (12)

Once these have been found, we then calculate

ds = min
l

‖y−Φhs,lr̂s,l‖2, (13)
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Figure 1: Probability of correct identification versus the
number of iterations of the reconstruction algorithm for
a codebook size of 16. The number of measurements is
equal to half the Nyquist rate (M = N/2).

which represents the minimum distance between the
measurements y and measurements from the reconstruc-
tions from the s-th speaker’s codebook.

Now, let di,s be the ds calculated for the i-th frame.
The actual speaker s∗ in the i-th frame should have the
smallest distance, so that

di,s∗ < di,s, ∀s �= s∗. (14)

Thus if this is true we have chosen the correct speaker,
and if not we have an error.

In practice, we can greatly improve the reliability
of speaker identification by considering n frames at a
time (i.e. a segment as defined in Section 4.1). This is
based on the fact that the speaker will not change from
frame to frame, and will rather be constant for a group
of frames. Thus we use a sliding window to determine
the most probable speaker as

ŝ = argmin
s

i∑
j=i−(n−1)

di,s, (15)

to determine the speaker. Obviously if ŝ �= s∗ then the
identification has failed for this particular segment. This
approach is the same as the segment-based approach for
identification as explained in the last part of Section 4.1.

5. RESULTS AND DISCUSSION

We now discuss the results we obtained from the simu-
lation of our proposed method. All speech signals used
in training and testing were obtained from the VOICES
corpus, available by OGI’s CSLU [15]. The speech sig-
nals, originally sampled at 22 kHz, were downsampled
to 8kHz, with N = 320 samples per frame and 50% over-
lapping between frames. The training data consisted of
30 sentences from 12 speakers, resulting in around 6000
frames per speaker.

Our codebooks were constructed in a manner similar
to that of [5], we analysed the training data to obtain
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Figure 2: Probability of correct identification versus the
number of measurements for various speaker codebook
sizes. The number of iterations of the reconstruction
algorithm is equal to one quarter of the number of mea-
surements (K = M/4).

the LPC and LSF vectors from which we generated the
set of hl’s for each speaker. We chose to use an LPC
order of 22 as that provided better performance, and
results in no increase in run-time complexity.

All the simulations were performed using 10 sen-
tences for each speaker different to those used to gen-
erate the codebooks. This provided more than 2000
frames of test data for each speaker.

Initially, we tested the performance of the sparsity-
based speaker identification. The measurement matrix
Φ consisted of M×N Gaussian samples with zero mean
and unit variance. The performance measure used was
the probability of correct identification of the speaker
using (15) with n equal to 140 frames (2.8 seconds),
and averaged over all 12 speakers.

As an initial investigation, we looked at the effect of
the number of iterations of the OMP algorithm, K, on
our proposed method for M = N/2 measurements per
frame. The results are shown in Fig. 1 for a codebook
size of L = 16. The identification process can be seen
to not be very sensitive to K around K ≈ M/4, and it
is this value for K that we used in the rest of this work.

Fig. 2 presents the performance of our proposed
method as the number of measurements M and the
size of each speaker’s codebook L are varied. These
results are intuitively satisfying; as M decreases, the
reconstruction quality will degrade, and thus the proba-
bility of correct identification decreases. The results for
M/N = 1 do not use compressed sensing, and this can
be thought of as the best possible performance. The per-
formance also improves as L increases, although there
seems to be diminishing returns after L = 32, and each
increase in L increases the complexity of the identifica-
tion process. Thus for L = 32 with 50% measurements
the probability of correct identification is about 0.8, and
if the measurements are lowered to 25% this probability
drops to about 0.6.

All the previous results are for noise-free speech.
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Figure 3: Probability of correct identification versus the
signal to noise ratio of the speech signal for the Gaus-
sian mixture model (GMM) method and the proposed
compressed sensing (CS) method.

We also explored the effect of additive white Gaus-
sian noise on the probability of correct identification
for the L = 32, M = N/2 case, and this is presented
in Fig. 3, along with the corresponding results for the
GMM method discussed in Section 4.1. The GMM
method used 32 diagonal mixtures and the same train-
ing and testing data as the compressed sensing (CS)
method. It is clear that the CS method outperforms
the GMM method once the signal to noise ratio (SNR)
is below 30dB. In fact, there is very little loss in perfor-
mance for the CS method down to an SNR of 20dB, and
even an SNR of 15dB affects the performance mildly.

Assuming the two methods were used in a sensor
with limited power resources, the CS method would re-
quire slightly more processing than the GMM method
in the sensor, as it needs to calculate the measurements,
although efficient measurement methods do exist. How-
ever the CS method would require half the bandwidth of
that of the GMM method to transmit the measurements
back to a central processor.

This transmission power gain and the robustness to
noise for the CS method come at the cost of increased
complexity in the speaker identification algorithm, but
for many applications this is acceptable.

6. CONCLUSIONS

We have presented a novel method for speaker identifica-
tion based on a sparse signal model and the use of com-
pressed sensing. The use of compressed sensing permits
the use of less transmission power for the sensor record-
ing the voice. Additionally, our method has been shown
to be robust to noise in the recorded speech signal. This
is encouraging and warrants further investigation.
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