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ABSTRACT

In this paper, symmetric correlation that is a correlation be-
tween symmetrically extended signals is proposed to esti-
mate shifts between two signals. Symmetrical extension cre-
ates smooth boundaries of endpoints of signals to avoid the
discontinuity of endpoints. The symmetric correlation is per-
formed by discrete cosine transform (DCT) without the in-
crease of the number of samples. Moreover, it is shown that
whitening of signals removes the interference effect of sym-
metry. That is, the correlation between signals can be directly
estimated by symmetric correlation with whitening. Using
the signs of DCT coefficients can be approximated as whiten-
ing, which contributes to lower computational complexity.

1. INTRODUCTION

The symmetric extension creates symmetry at the endpoints
for smooth boundaries to mitigate the end effects encoun-
tered in convolving finite-length signals. One area in which
symmetric extension is particularly useful is image filtering.
Symmetric extension has been mainly studied for convolu-
tion [1, 2, 3].

Correlation, on the other hand, is a measure of similar-
ity of two signals, which is used in many areas such as in
communications, pattern recognition, and cryptanalysis. In
signal matching, the shift between two signals is estimated
by maximum correlation values [4]. The correlation can be
calculated in either the spatial domain or the frequency do-
main by discrete Fourier transform (DFT). Although the pe-
riodicity is effective for calculation, finite-length signals may
create the discontinuity of endpoints, which impairs the es-
timation. In this case, window functions are generally used
in order to avoid the discontinuity of endpoints. However,
when the length of signals is not enough, the estimated value
is not reliable because window functions distort signals.

In the present paper, we define symmetric correlation and
describe its properties. Symmetric correlation is used for sig-
nal matching and motivated by low computational complex-
ity and creating smooth boundaries of endpoints of signals.
Symmetric correlation is performed by discrete cosine trans-
form (DCT) without the increase of the number of samples.
Moreover, whitening of signals removes the interference ef-
fect of symmetry, which suggests the correlation between the
original signals are estimated by symmetric correlation. We
show that using the positive and negative signs of DCT coef-
ficients can be approximated as whitening, which also con-
tributes to lower computational complexity. Some experi-
mental results are presented for the appropriateness and ef-
fectiveness of symmetric correlation.

2. PRELIMINARY

Circular correlation, phase correlation, and correlation coef-
ficients matrix are described. One-dimensional notation is
used for the sake of brevity.

2.1 Circular correlation
The circular correlation between x(n) and y(n), both of
length N, is defined as

r(n) = x(n)� y(n) =
N−1

∑
k=0

x(k)y(((n+ k))N) (1)

where the notation ((n))N denotes (n modulo N). Circular
correlation can be also calculated using DFT as

r(n) =
1
N

N−1

∑
k=0

X∗(k)Y (k)W−nk
N (2)

where X(k) and Y (k) are the DFT coefficients of x(n) and
y(n), respectively, and WN denotes exp(− j2π/N).

2.2 Phase correlation
Phase correlation is defined as

rφ (n) =
1
N

N−1

∑
k=0

φ ∗
X (k)φY (k)W−nk

N (3)

where φX (k) and φY (k) are phase factor of X(k) =
|X(k)|φX (k) and Y (k) = |Y (k)|φY (k), respectively. That is,
phase correlation is a kind of weighted cross correlation:

rφ (n) =
1
N

N−1

∑
k=0

WX X∗(k)WYY (k)W−nk
N (4)

where WX = 1/|X(k)| and WY = 1/|Y (k)|.
Phase correlation can be also expressed as a cross corre-

lation between signals whose spectral magnitude is normal-
ized. The normalized spectral magnitude signal is defined as
the inverse DFT of phase factor by

xφ (n) =
1
N

N−1

∑
k=0

φX (k)W−nk
N . (5)

2.3 Correlation coefficients matrix
Correlation coefficient, rXX (l), of N-point signal x(n) is de-
fined as

rXX (l) =
∑N−1

n=0 (x(n)− x̄)(x(n+ l)− x̄)

∑N−1
n=0 (x(n)− x̄)2

(6)
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Figure 1: Composition of signals.

where l denotes a lag and x̄ = ∑N−1
n=0 x(n)/N. Correlation be-

tween samples which are away from l on a signal is evaluated
by correlation coefficient. It is well known that the corre-
lation coefficients of natural images are approximated with
ρ < 1 as

rXX (l) ' ρ |l|. (7)

That is, the nearest samples are highly correlated.
The correlation coefficients matrix is defined as

RXX = RRt (8)

where

R = [rXX (0),rXX (1),rXX (2), · · · ,rXX (M−1)]t . (9)

The correlation coefficients matrix in AR(1) process is given
as a Toeplitz matrix [5], i.e.,

RXX = RRt =


1 ρ ρ2 · · · ρM−1

ρ 1 ρ · · ·
ρ2 ρ 1
...

. . .
ρM−1 1

 . (10)

3. SYMMETRIC CORRELATION

Symmetric correlation is proposed herein. The motivation of
symmetric correlation is to estimate the shifts between sig-
nals with low computational complexity and smooth bound-
ary of end points.

3.1 Symmetric correlation and its type
Let y(n) be a shifted signal of x(n), both of length N. Let
x̂(n) and ŷ(n) be symmetrically extended signal of x(n) and
y(n), respectively, as illustrated in Fig. 1. That is,

x̂(n) = x(n)+ xs(n) (11)
ŷ(n) = y(n)+ ys(n) (12)

where

xs(n) = x(2N −n−1), (13)
ys(n) = y(2N −n−1). (14)

Symmetric correlation, r̂(n), between x(n) and y(n) is de-
fined as

r̂(n) = x̂(n)� ŷ(n) =
2N−1

∑
k=0

x̂(k)ŷ(((n+ k))2N). (15)

Symmetric correlation can be also calculated using DFT, i.e.,

r̂(n) =
1

2N

2N−1

∑
k=0

X̂∗(k)Ŷ (k)W−nk
2N , n = 0,1, · · · ,2N −1

where X̂(k) and Ŷ (k) are the DFT coefficients of x̂(n) and
ŷ(n). The weighted symmetric correlation is hereby defined
as

r̂w(n) =
1

2N

2N−1

∑
k=0

WX̂ (k)X̂∗(k)WŶ (k)Ŷ ∗(k)W−nk
2N (16)

where WX̂ (k) and WŶ (k) are the weights.

3.2 Efficient calculation of symmetric correlation
It is well known that there is a relationship between the DFT
and DCT. From the relationship, symmetric correlation is
calculated by N-point DCT in stead of 2N-point DFT, i.e.,

r̂w(n) =
α
N

N−1

∑
k=0

(kk)2WXC(k)XC(k)WYC(k)YC(k)cos
(

πnk
N

)
,

n = 0,1, · · · ,N −1 (17)

where α is the scale factor, WXC(k) and WYC(k) are the
weights, and XC(k) and YC(k) are N-point DCT coefficients
of x(n) and y(n), respectively. The DCT coefficients, XC(k),
of x(n) is defined as

XC(k) =

√
2
N

kk

N−1

∑
n=0

x(n)cos
(

πk(n+1/2)
N

)
(18)

where

kk =
{

1, k 6= 0
1/
√

2, k = 0 . (19)

That is, the use of DCT achieves a symmetric correlation
without the increase of the number of samples.

There are some types of DCT on the basis of the type
of symmetry. With respect to other type of DCT, the study
of symmetric convolution [3] can be applied to symmetric
correlation.

4. PROPERTIES OF SYMMETRIC CORRELATION

The properties of symmetric correlation is shown and the ef-
fect of weighting is discussed.

4.1 Basic properties
Since circular correlation is a linear operator, symmetric cor-
relation r̂(n) is developed as

r̂(n) = x̂(n)� ŷ(n) = (x(n)+ xs(n))� (y(n)+ ys(n))
= x(n)� y(n)+ x(n)� ys(n)

+ xs(n)� y(n)+ xs(n)� ys(n)
= x(n)� y(n)+ x(n)~ y(n−1)

+ x(n−1)~ y(n)+ y(−n−1)� x(−n−1) (20)

where the operator ’~’ denotes circular convolution of x(n)
and y(n):

x(n)~ y(n) =
2N−1

∑
k=0

x(((k))2N)y(((n− k))2N). (21)
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That is, symmetric correlation consists of two correlation
terms and two convolution terms.

When, the two convolution terms in (20) are{
x(n)~ y(n−1) = 0
x(n−1)~ y(n) = 0 , (22)

then the symmetric correlation shows only the correlation
terms.

r̂(n) = x̂(n)� ŷ(n)+ y(−n−1)� x(−n−1) (23)

To satisfy (22), the correlation coefficients matrix in (8) is an
identity matrix, i.e.,

RXX = I. (24)

4.2 Special case of weighted symmetric correlation
If the weights WX̂ (k) and WŶ (k) in (16) are{

WX̂ (k) = 1/|X̂(k)|
WŶ (k) = 1/|Ŷ (k)| , (25)

then

WX̂ (k)X̂∗(k) ·WŶ (k)Ŷ (k) = ασX (k) ·σY (k) (26)

where σX (k) and σY (k) are the sign of N-point DCT coef-
ficients of XC(k) and YC(k), respectively. Like phase cor-
relation, the weighted symmetric correlation in this case is a
cross correlation between the symmetrically extended signals
whose spectral magnitude is normalized. In condition (25),
the symmetric correlation corresponds to a cross correlation
between normalized DCT-magnitude signals.

The normalized DCT-magnitude signal is defined as the
inverse DCT of the signs of DCT coefficients of a signal by

xσ (n) =

√
2
N

N−1

∑
k=0

kkσX (k)cos
(

πk(n+1/2)
N

)
. (27)

Figure 2(b) shows the normalized DCT-magnitude signal of
the original signal, Lena. Although the structure, such as
edge, of the original signal is preserved in the normalized
DCT-magnitude signal, the brightness of the signal is homo-
geneous. In this case, the weighted symmetric correlation
reduces to DCT sign correlation [6, 7]. However, the discus-
sion was limited to the relationship between the sign of DCT
coefficients and the phase factor of DFT coefficients.

Figure 3(a) shows correlation between samples (x(n),
x(n + l)) on a line of Lena. In the case for which l = 1, the
correlation of each set is high, while in the case for which
l = 4, the correlation is lower than the case for which l = 1.
Figure 3(b) shows the correlation between samples on a line
of the normalized DCT-magnitude signal of Lena. Regard-
less of l, the correlation of the normalized DCT-magnitude
signal of Lena is lower than that of the original image Lena.

Figures 4(a), 4(b), and 4(c) show the correlation coeffi-
cient matrix RXX in (8) of the original signal Lena, the nor-
malized DCT-magnitude signal of Lena, and the normalized
magnitude signal of Lena, respectively. The correlation co-
efficients matrix of the original signal is approximated as
the Toepliz matrix in (10) with ρ = 0.96. Conversely, the
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Figure 2: Normalized DCT-magnitude signal. Although the
structure, such as edge, of the original signal is preserved,
the brightness of the signal is homogeneous.
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Figure 3: Correlation between samples, (x(n), x(n + l)).
Regardless of l, the correlation of the normalized DCT-
magnitude signal of Lena is lower than that of the original
signal Lena.

correlation coefficients matrix of the normalized DCT mag-
nitude signal and normalized magnitude signal is approxi-
mated as an identity matrix. In Fig. 4(b), the mean and vari-
ance of the absolute error between RXX and I are 0.0246 and
6.44× 10−4, respectively. In Fig. 4(c), the mean and vari-
ance of the absolute error between RXX and I are 0.0263 and
3.94×10−4, respectively.

4.3 Steps of correlation between the original signals
The calculation steps of correlation between the original sig-
nals are as follows.
1. DCT in (18) is applied to two signals.
2. The DCT coefficients are weighted.
3. The weighted DCT coefficients of two signals are multi-

plied element by element.
4. The inverse transform in (17) is applied to the result.
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Figure 4: Correlation coefficients matrix. The correlation
coefficients matrix of the original signal is approximated as
the Toepliz matrix with ρ = 0.96. Conversely, the correlation
coefficients matrix of the normalized DCT magnitude signal
and the normalized magnitude signal is approximated as an
identity matrix.

In Step 2, when the weights are the reciprocal of the ab-
solute value of DCT coefficients, the weighted DCT coef-
ficients become the signs, which reduces the computational
complexity.

5. SIMULATIONS

5.1 Computational complexity
We evaluated the computational complexity of symmetric
correlation. There are fast calculation algorithms of DCT as
well as DFT. Wang’s algorithm achieves N-point DCT with

µN =
N
2

log2 N +1, (28)

αN =
3N
2

log2 N −N +1 (29)

where µN denotes the number of multiplications of real num-
bers, and αN denotes the number of additions [8]. The N-
point FFT, on the other hand, is achieved by

MN =
N
2

log2 N, (30)

AN = N log2 N (31)

where MN and AN denote the number of multiplications and
additions of complex numbers, respectively [9].

Table 1 summarizes the number of real number opera-
tions for circular correlation between two signals, both of
length N. The complex multiplication is commuted to three
real multiplication and three real additions [10]. The number
of real number multiplications is shown in Fig. 5.

5.2 The effect of weighting (1D)
Shift estimation is performed to show the effect of whitening.
Two signals, both of length 400, are shifted by 50 samples.
A line of Lena was used for the two signals.

Table 1: The number of real number operations for circular
correlation between two signals, both of length N. CC and
SC denote circular correlation and symmetric correlation, re-
spectively.

method multiplications additions
CC by (1) N2 N(N −1)
CC by (2) 3(3(N log2 N)/2+N) 2(3N log2 N)

SC by DCT 3((Nlog2N)/2+1)+N 3((Nlog2N)/2−N+1)
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Figure 5: The number of multiplications for correlation be-
tween two signals. CC, PC, and SC denote circular corre-
lation, phase correlation, and symmetric correlation, respec-
tively.

Figures 6(a) and 6(b) show the correlation according to
(2) and symmetric correlation, respectively, between two sig-
nals. Although the location which has the highest correlation
value shows the shift between signals, the effect of convo-
lution terms are shown in symmetric correlation. Figures
6(c) and 6(d) show the phase correlation according to (3) and
weighted symmetric correlation according to (17) where the
signs of DCT coefficients are used, respectively, between two
signals. The effect of whitening is shown by weighting.

5.3 The effect of weighting (2D)
Figures 7(a), 7(b), and 7(c) show the symmetric correlation,
weighted symmetric correlation where signs of DCT coeffi-
cients of one of the signals are used, and weighted symmet-
ric correlation in condition (25). Image Lena was used for
signals in which they are shifted by 20 pixels in the horizon-
tal and vertical directions. Even the case in which signs of
DCT coefficients in one of the signals are used, the effect of
whitening is confirmed.

5.4 Effect of symmetry
We show the effect of symmetric correlation on end effects
encountered in calculating finite length signals. Figure 8(a)
shows two signals, the signal x(n) of length 64, and the sig-
nal y(n) of length 32, in which y(n) = x(n+n0) and n0 = 32.
Although the estimated shift between the two signals is incor-
rect in phase correlation shown in Fig. 8(b), the shift is cor-
rectly estimated by symmetric correlation shown in Fig. 8(c).
This difference is caused by the periodicity of signals in
which the DFT creates the discontinuity of signals and the
DCT creates smooth boundaries.
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Figure 6: Shift estimation (1D). Weighting by (25) provides
the effect of whitening.
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Figure 7: Correlation of Lena images. R denotes the recipro-
cal of the absolute value of DFT coefficients in (16).

6. CONCLUSION

We have proposed a symmetric correlation and discussed
its properties. Symmetric correlation is performed by DCT
without increasing samples. We have defined weighted sym-
metric correlation in which weights whiten a signal, and as an
example, a correlation between signs of DCT coefficients has
been shown. Some experimental results have demonstrated
the appropriateness of symmetric correlation.
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