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ABSTRACT
This paper addresses the combination of wordlength op-
timization and architectural synthesis as a single design
task, aiming at reducing the area of FPGA implementations.
These two well-known design tasks are commonly applied
sequentially. On one hand, wordlength optimization’s goal is
to find the fixed-point format of signals that minimizes cost.
On the other hand, architectural synthesis optimizes the ar-
chitecture of the implementation of an algorithm.

These two tasks are highly interdependent, since the
wordlength minimization depends on the architecture and the
architectural synthesis final output depends on the initial sig-
nal wordlengths. By combining them, a wider exploration of
the design space can be performed.

A fine-grain combined wordlength optimization and ar-
chitectural synthesis based on the use of simulated anneal-
ing is presented. The optimizer is tuned for DSP algorithms
and is able to simultaneously optimize in terms of implemen-
tation area and output noise, thus leading to significant im-
provements. A complete comparison between the traditional
sequential approach and the proposed combined approach is
provided. Area improvements of up to 21% are reported.

1. INTRODUCTION

The high complexity involved in the design of DSP hardware
systems requires the introduction of powerful Computer-
Aided Design (CAD) tools to make their physical implemen-
tation possible. The design flow is divided into several tasks
that allow the designer to traverse the path from the design
specification to the implementation. Here, the combination
of two well-known design tasks, Wordlength Optimization
(WLO) and Architectural Synthesis (AS), as a single task is
presented, aiming at the area optimization of DSP DSP hard-
ware architectures.

WLO performs the translation of an initial infinite-
precision description of a DSP algorithm into a finite-
precision description (i.e. fixed-point). Fixed-point arith-
metic is commonly used to implement DSP circuits, as it
has proved to enable low-cost, low-power and high-speed
implementations [1, 2]. It is necessary to wisely select the
wordlengths of the different in the hardware implementation
while keeping the output noise within requirements in order
to minimize design costs.

AS’ final goal is to find the best hardware architecture
that complies with the power, area and speed constraints
[3, 2, 4]. It is mainly composed of the scheduling, re-
source allocation and resource binding phases. AS trans-
forms an initial algorithm specification (i.e. a Data Flow
Graph (DFG)) into a Register Transfer Level (RTL) descrip-
tion, while meeting certain design constraints.

Traditionally, these two tasks have been carried out se-
quentially to reduce computational complexity. First, WLO
is performed to obtain the wordlengths of the algorithm sig-
nals attending to an error constraint. Then, AS explores the
design space to transform an initial description of a quantized
algorithm and produces the final hardware architecture opti-
mized in terms of cost (i.e. speed, etc.). The main drawback
of this two-step methodology is that it does not take into ac-
count the interdependencies between these two tasks. On one
hand, WLO cannot make use of a proper area/speed/power
model since the architecture has not been yet completely de-
fined. On the other hand, the architectural decisions made
during AS are highly affected by the wordlengths of the sig-
nals. Hence, the final cost of the system after AS is not guar-
anteed to be minimal, since the architectural models used in
both tasks may differ considerably.

The combined application of both design tasks allows the
use of a single architectural model during the whole design
process, thus leading to highly optimized implementations.

This paper contains the following contributions:
• A novel simulating annealing (SA) based architecture

generator that combines AS and WLO into a single task
where:
– A complete set of resources (i.e. functional units,

multiplexers and registers) is considered.
– Functional units are wordlength-wise.

• Results for a set of DSP benchmarks under different er-
ror/latency constraint scenarios.
The paper is structured as follows: In section 2, related

work is discussed. Section 3 presents the combined WLO
and AS proposal. Performance results are collected in sec-
tion 4. And finally, section 5 draws the conclusions.

2. RELATED WORK

Here, we present some of the most relevant works regarding
the combination of WLO and AS.

One of the pioneer works in this field is [5], where the
wordlength selection is carried out by minimizing a lower
bound on the area cost of a resource sharing architecture.
Once the wordlengths are selected, scheduling, resource al-
location and resource binding are performed. The inter-
esting point of this work is that quantization makes use of
an estimation of the total area based on output latency and
wordlengths. The latency of resources is considered variable,
although a very simple model is used. The results are com-
pared to an uniform wordlength approach (UWL), but there
is no comparison to the traditional sequential approach.

In [1] WLA and HLS are interleaved. First, the system
is quantized using a noise constraint a little bit more relaxed
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than the required in the specification. Then, a datapath is
created by applying scheduling, resource allocation and re-
source binding. Finally, the architecture is refined by in-
creasing the FUs’ wordlengths until the noise constraint is
met. The work is valuable, however, the approach is too sim-
plistic: a single optimization iteration, 1-cycle latencies FUs,
etc. Again, the authors do not provide any comparison with
a traditional two-step approach.

In [6] the combined problem is explored by means of
MILP. Due to the very long computation times required by
MILP, the problem complexity is reduced through some sim-
plifications: 1-cycle latencies FUs, multiplexers and registers
neglected, etc. The purpose of this work is to present initial
results on the combined problem that can be used as a start-
ing point to develop heuristics (see section 4). The results
prove the validity of the combined approach.

The work in [7] is an extension of [1] and [5]. Here, FUs’
costs (area, latency and power consumption) are wordlength
dependent. Basically, WLO and AS are introduced within
a loop. Operations are grouped after AS, based on mobility
and wordlength information. The wordlength of each group
is optimized by means of WLO to reduce cost. Every change
in the wordlengths of operations produces a new datapath
which leads to new groups of operations. The method iterates
several times and records the best solution. Once more, the
final results are not compared to the sequential approach.

The work presented here is based on a different approach,
since we support a fine-grain optimization, where the archi-
tectural modifications regarding output precision and archi-
tecture components are considered within a simulated an-
nealing (SA) optimization framework. Additionally, some
of the drawbacks of previous approaches are overcome: sim-
plified resource latency model [5, 1, 6], no comparison to
traditional approach [5, 1, 7], multiplexers and registers ne-
glected [5, 1, 6, 7], etc.

3. PRECISION-WISE ARCHITECTURAL
SYNTHESIS

3.1 Formal description

Here we present the resource minimization problem con-
strained in terms of time (i.e. latency) and output error (i.e.
wordlengths). The notation used is based on [6] and [8].

Given a sequencing graph GS(V,S), a maximum latency
λ , a maximum output error ε and a set of resources R
(e.g. functional units RFU , registers RREG and steering logic
RMUX ), it is the goal of the combined WLO and AS to find
the time step when each operation is executed (scheduling),
the types, number and size (i.e. wordlength) of resources
forming R (resource allocation), and the binding between op-
erations and variables to functional units (FU) and registers
(resource binding), that comply with the constraints while
minimizing cost (i.e. area).

GS(V,S) is a formal representation of a single iteration of
an algorithm, where V is the set of operations and S ⊂V ×V
is the set signals that determines the data flow. We consider
V = VM ∪VG ∪VA ∪VD ∪VI ∪VO composed of typical DSP
operations: multiplications, gains, additions, unit delays, and
input and output nodes.

Signals are in two’s complement fixed-point format, de-
fined by the pair (n, p). Parameter n is the wordlength of the
signal – not including the sign bit – and p is the scaling of
the signal that represents the displacement of the binary point

from the sign bit [6]. In order to obtain the quantization noise
generated by a signal (εi) it is necessary to also know the pre-
quantization fixed-point format (n pre, ppre) which expresses
the format before any wordlength reduction. For instance, if
a signal with a dynamic range of [0,4) and precision of 2−8

is quantized reducing its precision to 2−5, this operation can
be expressed as a change from format (n pre, ppre) = (10,2)
to format (n, p) = (7,2). Eventually, the noise contribution
of each signal εi can be related to the total output error ε (see
subsection 3.2 for more details).

Functional units (RFU ) are in charge of executing the set
of operations from V . Registers (RREG) store the data pro-
duced by FUs and some intermediate values. Finally, steer-
ing logic (RMUX ) interconnects FUs and registers by means
of multiplexers. The set of FUs RFU = RA∪RM is composed
of adders and multipliers. An FU r ∈ RFU is defined by its
type type(r) = {Adder,Multiplier} and by its size, that de-
pends on the input wordlengths. An operation is compatible
with an FU if they have compatible types and if the size of
the operation is smaller than or equal to the size of the FU
[6, 9].

Scheduling is expressed by means of function ϕ : O →
Z+, which assigns a start time to each operation. Resource
binding, is divided into FU binding and register binding. FU
binding makes use of the compatibility graph GC(V ∪R,C)
[10], which indicates the compatible resources for each v∈V
by means of the set of edges C ⊂V ×R. The binding between
operations and resources is expressed by means of function
β : V → R×Z+, where β (v) = {r, i} indicates that operation
v is bound to the i-th instance of resource r. The compatibil-
ity rules impose that (v,r) ⊂C. In a similar fashion, register
binding links variables d ∈ D to registers r ∈ RREG by means
of function γ : D → RREG ×Z+. The set of variables D is ex-
tracted from V considering that there is a variable assigned to
the output of each operation from the subset VM∪VG∪VA and
to each delay vD connected to another delay. Registers have
an associated size nr that determines the maximum allowed
wordlength of the variables bound to them.

The steering logic consists of the multiplexers required
in front of FUs and registers to send data to and from these
two types of resources. RMUX is determined by ϕ , β and γ ,
since ϕ determines when data is generated, β when data is
used by FUs, and γ where data is stored.

3.2 Noise estimation

Noise estimation is based on the assumption that the quanti-
zation of a signal si from npre bits to n bits can be modeled
by the addition of a uniformly distributed white noise with
the following statistical parameters [11]:

σ2
i =

22pi

12

(
2−2ni − 2−2npre

i

)
(1)

µi = −2pi−1
(

2−ni − 2−npre
i

)
. (2)

Using this model it is possible to quickly estimate the
quantization error at the output of the algorithm for any given
combination of npre,i and ni [4]. In particular we use the
fast and accurate estimation methods for both LTI and non-
linear systems from [12] that relates the wordlengths of the
signals to the output error (see eqns.3-5). For instance, the
wordlengths enable the computation of the noise statistic pa-

rameters �σ2 =
〈

σ2
0 , . . . ,σ2

|S|−1

〉
and �µ) =

〈
µ0, . . . ,µ|S|−1

〉
.
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Vectors �v and �m, and matrix M can be precomputed before
WLO following the method in [12]. The use of fast estima-
tor speed up process of WLO significantly (several orders of
magnitude).

Po = �σ2 ·�vT +�µ ·M ·�µT (3)

µo = �µ ·�mT (4)

σ2
o = Po − µ2

o (5)

3.3 Resource modeling

The area of the circuits is estimated using the resource mod-
els in [9]. Resources are divided into three types: functional
units (RFU ), registers (RREG) and steering logic (RMUX ). The
area and latency of FUs and registers (i.e. A(r) and l(r)) are
expressed as functions of the input and output wordlength
information. They are obtained by applying curve fitting to
hundreds of synthesis results. The use of accurate delay cost
functions has proved to provided significant performance im-
provements (from 12% to 63%) compared to other existent
naive approaches (see [9]). Registers are assumed to have a
zero latency. The fact that multiplexers and wiring latencies
are neglected could be easily overcome by multiplying the
latency of FUs by an empirical factor, as hwon in [13].

The area of multiplexers in UWL systems is only affected
by the data wordlengths, which set the multiplexers’ sizes,
and by the number of different data sources (e.g. registers
or FUs), which determines the multiplexers’ width. How-
ever, if the wordlengths are optimized, that is, if a multiple
wordlength (MWL) approach is followed, the area of multi-
plexers depends on the wordlengths of their different inputs
and also on the coding that relates multiplexers’ control sig-
nals and the inputs themselves. A lower bound on the area of
a multiplexer is given by [9].

AMUX =
1
4

N−1

∑
i=0

(ni + 1) slices, (6)

where N is the maximum wordlength of the mux’s input sig-
nals and ni is the wordlength of signal i.

4. SIMULATED ANNEALING BASED APPROACH

An optimal analysis based on MILP of the combined synthe-
sis was carried out in [6]. Even though the problem was sim-
plified to reduce the complexity of the optimal analysis, some
fundamental conclusions could be extracted. These conclu-
sions are the basis for the development of a heuristic able to
address the combination of WLO and AS efficiently:
• The combination of WLO and AS as a single task pro-

duces area reduction.
• The area improvements happen sporadically when some

particular combinations of noise and latency constraints
occur.

• The following heuristic rules are derived:
– A shared resource performing operations on sizes

smaller than the resource size can be used to reduce
noise by increasing all operations’ sizes to the max-
imum permitted. An increase in wordlength (size)
produces a decrease in noise, which allows a possi-
ble size reduction (that still may show up as noise
increase in further optimization steps.

Simulated annealing

Find initial quantization
(pi,ni)

GS,

Obtain R and GC

Find initial binding
( 0)

Amin=A (b0)
= 0

Apply movement
ni,new, Rnew, GC,new, new

Compute Anew
enew and new

Constraints met? Anew=max(Amin, Anew)

Accept movement?

A=Anew
ni=ni,new
R=Rnew

GC=GC,new

Anneal temperature

NO

YES

NO

YES

Figure 1: Optimization procedure.

– A shared resource performing operations on sizes
smaller than the resource size can be used to reduce
area by setting all operations’ sizes to the maximum
permitted size minus one unit, thus reducing the size
of the shared resource.

– A combination of the two previous rules.
– Simultaneous increase and/or decrease of the size of

several resources.
All these conclusions and rules have been applied in the

development of the optimization procedure based on SA pre-
sented here (see Fig.1).

Fig. 1 displays the precision-wise architectural synthesis
process. Its inputs are the sequencing graph GS, the error
constraint ε and the total latency constraint λ . Graphs R
and Gc are extracted from GS. First, scaling is carried out
and the values of pi are fixed for each signal. Then a UWL
WLO is applied and the initial sets of n and n pre are obtained.
With this information, the mapping β0 that would produce
the fastest parallel implementation is selected as the initial
resource binding. Then, SA is used to drive the optimization
procedure, where movements are applied to the current bind-
ing β and the sets of ni and npre,i. The following movements
are supported:

• AS movements
– MA

HLS: Map an operation o ∈ O to a non-mapped re-
source.

– MB
HLS: Map an operation o to another already mapped

resource.
– MC

HLS: Swap the mapping of two compatible opera-
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tions mapped to different resources.
– MWLA

A : Select a signal si ∈ S\in(VF)∪ out(VD) and
increase ni one unit .

• WLO movements
– MB

WLA: Select a signal si ∈ S\in(VF)∪ out(VD) and
decrease ni one unit .

– MC
WLA: Select a resource r ∈ RFU and increase one

unit the size of all operations bound to it that do not
increase the original size of the resource.

– MD
WLA: Select two resources r1,r2 ∈ RFU . Apply

movement MC
WLA to r1 and r2. Reduce one unit the

size of operations bound to r2 that meet the original
size of the resource.

As in any SA approach, each time a movement is per-
formed, the resulting area A as well as the output error and
the total latency of the current solution are computed. If the
noise constraint is met and the area is smaller than the cur-
rent minimum area the movement is accepted. If the area is
greater than the minimum so far, the movement is accepted
with a certain probability that decays with time. Movements
that do not comply with the noise or latency constraints can
be accepted with a very low probability, thus enabling a
wider design space exploration [9]. This is carried out by
means of a penalty factor applied to the current area A.

The computation of A is performed after specific
wordlength-wise algorithm for scheduling, register binding
and multiplexer selection [9]. Scheduling is based on a iter-
ative list-based algorithm that obtain the minimum area so-
lution considering the lower and upper bounds on the num-
ber of instances of each resource. Register binding relies on
a wordlength-wise modification of the left-corner algorithm.
Multiplexer selection is also a novel wordlength-wise algo-
rithm that tries to minimize sign extension in order to reduce
multiplexers and registers area. Check [9] for a more de-
tailed explanation. It worth mentioning that every time the
quantization change, R and GC, and therefore A, must be re-
computed.

This method provides a robust way to perform the tasks
of scheduling, resource allocation, resource binding and
wordlength optimization simultaneously. One of its main ad-
vantages is that the resource set can be as complex as desired,
including variable-latency resources, multiplexers and regis-
ters [9].

5. RESULTS

The following benchmarks are used for the analysis:
• ITU RGB to YCrCb converter (RGB).
• 3rd-order lattice filter (LAT3).
• 4th-order IIR filter (IIR4).
• 8-th order linear-phase FIR filter (FIR8).
• 4-point DCT transform (DCT4 [14])
• 8-point DCT transform (DCT8 [14])

All algorithms are assigned 8-bit inputs and 12-bit con-
stant coefficients. The algorithm implementations have been
tested under different latency and output noise constraint sce-
narios assuming a system clock of 125 MHz. In particular,
the noise constraints were σ 2 = {10−k,10−(k+1),10−(k+2)},
where k is the minimum number that makes 10−k as close as
possible to the variance of the output quantization if the out-
put is quantized to 8 bits (n = 7). The target devices belong

to the Xilinx Virtex-II family and Xilinx XST v.9.2 tool [15]
was used to extract the resource model.

For all noise-latency scenarios the benchmarks were im-
plemented using both a sequential approach and the proposed
combined approach. In the sequential approach, first a SA-
based WLO was applied ([12]), followed by a SA-based AS
[9].

Fig. 2-a plots the area improvements of DCT4 obtained by
the combined approach for three different noise constraints
and different algorithm latencies. The latencies range from
λmin, which is the minimum achievable algorithm latency,
to λmin + 10, and it is expressed in the graph using the la-
tency offset ∆λ from the λmin. The results show that area im-
provements are always obtained. However, there are only a
few error/latency scenarios where the improvements are sig-
nificant (σ 2 = 10−3, ∆λ = {1,3}; σ 2 = 10−4, ∆λ = [5,10];
σ2 = 10−5, ∆λ = [4,10] ) since they range from 6.6% to
9.6%. This situation recalls that of the optimal case [6],
where improvements did not happen all the time. However,
now there is an improvement for the majority of cases. This
is due to the fact that the design space is now larger. Also, the
latencies of resources are now dependent on the wordlengths,
which adds new optimization possibilities.

Fig. 2-b displays the DTC4 detailed resource distribu-
tion for σ 2 = 10−4 and ∆λ = 1 (λ = 5). The area required
for functional units (FU), FU’s multiplexers (MUX −FU),
registers (REG) and registers’ multiplexers (MUX − REG)
for the sequential and combined implementations are shown.
The accumulation of the area is the total area of the imple-
mentation. In this case, the improvements of 9% obtaind by
the combined approach are mainly due to a reduction in FUs’
multiplexers and FUs.

The graph on Fig. 3 depicts the overall results regarding
the combined approach. For each quantization scenario the
latency ranges from λmin to λmin+10, and the mean and max-
imum values of the area improvements obtained by the com-
bined implementations in comparison to the sequential im-
plementations are computed. The improvements suggest that
there is a tendency to obtain better results as the complexity
(i.e. number of operations) of the algorithms increases. Sum-
marizing, are improvements are obtained in most cases, with
an overall mean improvement of 3.93% and a maximum area
improvement of 21.32% (DCT8). These should be consid-
ered as very good results, since they describe improvements
over highly optimized results obtained from quasi-optimal
sequential WLO and AS.
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Figure 3: Overall area improvement for all benchmarks.
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Figure 2: Implementation results for DCT4: (a) area improvements vs. latency curves; (b) area resource distribution (normal-
ized with respect to XC2V40 device).

6. CONCLUSIONS

The combination of WLO and AS have been addressed by
presenting a simulated annealing based approach is presented
that deals with the complex optimization process involved.
The proposal is capable of generating an architecture that
meets both latency and error constraints, having as input a
signal flow graph representation of a infinite-precision DSP
algorithm. The architectural optimization accounts for datap-
aths composed of functional units, registers and multiplexers.
Also, the fixed-point format of signals is determined during
the optimization process.

The results show that, in most cases, the combined ap-
proach improve the area cost, with area improvements up to
21% when compared to the traditional approach.

Future work will involve the extension of the combined
approach to include DSP embedded blocks.
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