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ABSTRACT
3D applications need a stereo matching algorithm that can
merge the left image with the right image. In this paper we
propose a stereo matching algorithm based on some binocu-
lar properties of the human visual system. For this, we have
focused on the simple and complex cells properties that are
responsible for binocular fusion. A model, based on a com-
plex wavelet transform, a color contrast sensitivity function
and a bandelet transform, is proposed to model the properties
of the simple and complex cells characterized by their size,
orientation, phase and amplitude. This model is designed to
calculate the binocular energy generated by each binocular
complex cell. A model refinement based on properties spe-
cific to the lateral geniculate body is then proposed to refine
the results obtained with the binocular energy model calcu-
lation. The obtained results can be exploited by the stereo-
scopic vision applications, such as 3D reconstruction, stereo-
scopic coding, stereoscopic quality assessment and other ap-
plications.

1. INTRODUCTION

The binocular vision has the responsibility to put both eyes in
a synchronous way and with a perfect coordination to recon-
struct the relief. The retinal images received by both eyes go
through a succession of processes before arriving to the vi-
sual cortex where they are merged. More and more work has
been done to model the match operation which both images
undergo at the visual cortex. Hubel and wisel [1] defined two
types of binocular cells, named as the simple and the com-
plex cells, according to the degree of their complexity. The
complex cells, in their model, are built by association of a set
of simple cells as described by Fig. 1. According to Hubel
et al. [1] and campbell et al.[2] the receiving fields of these
cells are described as a linear filter constituted by different
activated regions (ON) and inhibited regions (OFF). The op-
timal activation of these cells is made by a luminance grating
so that the white bar covers the ON region and the black bar
covers the OFF region. In 1990, Ohzawa et al.[3] proposed
a model to compute the binocular energy. They model the
cells by functions characterized by their amplitude and ori-
entation. In literature, orientation selective wavelets as the
Gabor wavelet, the curvelet and the bandelet describe math-
ematically the functioning of these cells. The ON and OFF
regions of the cells correspond respectively to peaks and hol-
lows of these functions.

In this paper, we propose a matching algorithm taking
into account the phenomenon of binocular rivalry. The pa-
per is organized in four sections: In the second section, we
present the proposed approach; Our model for computing the
binocular energy is introduced in the third section, the fourth

section focuses on the refinement of the model; The experi-
mental results are presented in section five. This paper ends
with some conclusions and gives some future directions.

2. PROPOSED FTOAPPROACH

The binocular matching is the most complex process in the
stereoscopic vision. To conceive our model we are interested
in the functioning of the human visual system (HVS). Once
the retinal images are captured by both retinas, the left halves
of the images are stored in the right lateral geniculate body
(LGB) and the right halves are stored in the left LGB. Two
signals belonging to the right and left retinal images and rep-
resenting the same region of the space are put side by side.

The binocular rivalry phenomenon appears when both
retinal images are different; The LBG replaces the stimulus
having the least contrast by the stimulus with the highest con-
trast. To simulate these processes, in the aim to optimize the
matching, we integrated binocular constraints and monocular
constraints in our model. The binocular constraints used in
our model are the uniqueness constraint, occlusion constraint
and the cohesiveness constraint. The monocular constraints
used are occlusion, cohesiveness and inter-ocular inhibition
constraints described in Section. 4. The last constraint allows
to take into account the binocular rivalry phenomenon in our
model.

After these pretreatments, the signals leave the LGB for
the visual cortex. In the visual cortex, we have the simple
and the complex cells, which are responsible for the binocu-
lar fusion. These cells are characterized by their size, phase
and orientation. The signals from the two LGBs are classi-
fied into two categories, the monocular signals captured by
the monocular simple cells and the binocular signals cap-
tured by binocular simple cells. The simple cells work in
pairs (Fig. 1); each pair is connected to a complex cell. The
simple cells of one pair have the same size and orientation
with a phase shift equal to π/2. The first cell has a center
sensitive to light and a circumference not sensitive to light
(ON/OFF) and the opposite is true for the other cell, a center
not sensitive to light and a circumference sensitive to light
(OFF/ON). For that reason there is a phase shift between the
cells pair.

To model the behavior of these cells, we looked at the
adaptive spatial frequency transform presenting the same
mathematical properties with these cells. In the first step,
we applied the complex wavelet transform (CWT) on both
stereoscopic images. The analysis functions used to obtain
the real and imaginary part of this decomposition has a phase
shift equal to π/2. This decomposition allows to separate the
response obtained with both types of simple cells (ON/OFF)
and (OFF/ON). After this stage, a contrast sensitivity func-
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tion (CSF) [4] is applied on the coefficients obtained with
the complex wavelet transform. This function allows to re-
move the CWT coefficients that are not perceived by the hu-
man visual system, which gives a better representation of the
singularities of stereoscopic images in the complex wavelets
domain. To identify the pairs of simple cells, we applied
the bandelet transform on the coefficients obtained with the
CWT. The same geometry (quad-tree, orientation) is used in
the bandelet transform for real and imaginary parts of the
CWT. The good representation of the singularities, of the two
stereoscopic images obtained with CSF, allows a better esti-
mation of the geometry of the images obtained by bandelet
transform.

Two dyadic squares, which belong respectively to real
and imaginary parts of the left or the right image, constitute
a pair of response having the same characteristics (size, ori-
entation and phase) with simple pair of cells. These pairs of
dyadic squares areare exploited by a model for computing a
binocular energy of the retinal images.

3. BINOCULAR ENERGY MODEL (BEM)

In the previous section, we mentioned the spatial-frequency
transform that we use in our metric scheme. As shown in the
following figure, a CWT is applied to the luminance compo-
nent [L∗] of the left and right retinal images. The filters used
to compute the real and the imaginary parts presents a shift-
phase equal to π/2. DWT is applied to the chromatic com-
ponent of the both images (a∗ and b∗), knowing that these
components are orthogonal. This preprocessing step allows
a complex writing of the luminance and chrominance com-
ponents as described by equation 1.

Image = {Re[L], Im[L],Re[C], Im[C]}
= {Re[CWT (L∗)], Im[CWT (L∗)],DWT [C(a∗)],DWT [C(b∗)]}
L : luminance,C : Chrominance

(1)

Fig. 1. Simplistic representation of the dyadic squares to be
matched.

Starting from the definition given above, the model that
we propose to calculate the binocular energy is based on the
model proposed by Ohzawa [3] and the one proposed by
Fleet [5]. Bandelet transform, applied on the wavelet coef-
ficients of luminance and chrominance components, allows
to define the image geometry. This latter is defined by a
set of dyadic squares (the same geometry is applied to the
real and imaginary parts of the luminance and chrominance).
Each dyadic square is characterized by its size and orienta-
tion. Dyadic squares obtained with CWT applied to the lu-
minance are arranged in pairs, similar to the dyadic squares
obtained with the DWT, applied to both chrominance com-
ponents. Dyadic squares of a given pair belong to the real
part of the CWT (Re[L(x)]L) and the imaginary part of the
CWT (Im[L(x)]L). Dyadic square pairs of the chromatic
component belong respectively to the real part represented

by the DWT (Re[L(x)]C), applied to the component a∗ and
the imaginary part represented by the DWT (Im[L(x)]C), ap-
plied to the component b∗. Dyadic squares of a pair have
given the same orientation and same size with a shift-phase
equal to π/2. L(x) and R(x) (responses of two simple cells
(Fig. 1)), Complex-valued response in left and right eyes, are
expressed by their amplitude and orientation of the complex
function(L(x) = ρl(x)exp(φl(x))). where:

ρ
2
l (x) = |L(x)|2 = Re [L(x)]2 + Im [L(x)]2 (2)

ρl(x) is the monocular amplitude of the complex function
and φl(x)(Eq. 3) is the phase monocular of the complex func-
tion.

φl(x) = arg |L(x)|= arctan(Im [L(x)]/RE [L(x)]) (3)

Table 1 summarizes all the parameters described above by
giving the appropriate definition.

Table 1. Symbol table.
parameters Definitions
X Retinal position
L(x), R(x) Complex-valued response in left and right eyes, at

position x
Re[L(x)]L Luminance real part of left monocular re-

sponse(dyadic square)
Im[L(x)]L Luminance imaginary part of left monocular re-

sponse
Re[L(x)]C Color real part of left monocular response
Im[L(x)]C Color imaginary part of left monocular response
ρl/r(x) Monocular (left eye) amplitude signal
φl/r(x) Monocular (left eye) phase signal
φ
′
l/r(x) Left-eye instantaneous frequency at position x

∆ψ simple cell phase shift
d Stimulus disparity
∆φ(x) phase difference
E(x) Binocular energy response at retinal position x
E(x,d) Response of binocular energy neuron with simple

cell position shift
E(x,∆ψ) Response of binocular energy neuron with simple

cell phase shift
E(x,d,∆ψ) Response of binocular hybrid energy neuron with

position shift d and phase shift ∆ψ

After all the preprocessing steps comes the stage of
matching of the retinal pairs of images. For this, the dyadic
squares pair of one image are matched with another pair of
the second image by calculating the binocular energy pro-
duced by these two pairs of dyadic squares (which represents
the response of two simple cells). The cell responsible of the
information fusion, in the human visual system, is the com-
plex cell. The binocular complex cell takes as input two re-
sponses from two simple cells (two pairs of dyadic squares
belonging respectively to the left and right retinal images).
If the complex cell is of type monocular, it will take as in-
put a response of a simple cell (a pair of dyadic squares). In
the case of a binocular complex cell, the binocular energy
(Eq. 11) is calculated as described in [5].

E(x) = |L(x)+R(x)|2 = (Re [L(x)]+Re [L(x)])2

(Im [L(x)]+ Im [R(x)])2 (4)

The two pairs of matched dyadic squares, belonging respec-
tively to the right image R(x) and the left image L(x) must
have the same orientation and the same size.
When we replace L(x) = ρl(x)exp(φl(x))and R(x) =
ρr(x)exp(φr(x)) by their respective definition, we obtain the
following equation :

E(x) = ρ
2
l (x)+ρ

2
r (x)+2ρl(x)ρr(x)cos(∆φ(x)) (5)
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E(x) is the energy of the response obtained by the binocular
complex cell. When the both pairs of dyadic squares have
not a same position, the right monocular response R(x) is
a shifted version of the left monocular responses L(x), i.e.
R(x) = L(x−d). Similarly, when the phase signal is not the
same between the pairs of dyadic squares φ(x) = φ(x− d).
From this, we can express the inter-ocular phase difference
using a Taylor series of φl(x−d)(Eq. 13):

∆φl(x,d) = φl(x)−φr(x) = φl(x)−φl(x−d) = dφ
′
l/r +O[d2] (6)

Combining equation 13 with equation 12 gives us a useful
characterization of a binocular energy as described by equa-
tion 14. As the disparity is increased slightly above zero, the
binocular energy response decreases as the cosine of dispar-
ity times instantaneous frequency, cos(dφ

′
l/r).

∆φl(x,d) = φl(x)−φr(x) = φl(x)−φl(x−d) = dφ
′
l/r +O[d2] (7)

In [3], authors showed that if the simple cells have not the
same orientation, the disparity between them is useless. Fleet
[5] defined this relation in the following way:

R(x) = exp(i∆ψ)L(x−d) = ρl(x−d)exp(φl(x−d)+∆ψ) (8)

∆ψ denotes a phase shift between the couple of simple cells.
So, the binocular energy of the left and the right pairs of
dyadic squares are then related. The phase difference has
now the form:

∆φl(x,d,∆ψ) = φl(x)−φr(x)−∆ψ = dφ
′
l/r−∆ψ (9)

Finally, the binocular energy(Eq. 14), computed by the com-
plex cell for the both pairs of dyadic squares, is equal to:

E(x,d,∆ψ) = ρ
2
l (x)+ρ

2
r (x)+2ρl(x)ρr(x)cos(dφ

′
l −∆ψ) (10)

If E(x) is above the threshold (h) both dyadic squares are
matched otherwise they are not matched.

4. REFINEMENT OF THE BINOCULAR ENERGY
MODEL (RBEM)

To refine the result of matching obtained with the binocular
energy model, we proposed a model based on the work of
Hayashi et al. [6]. The authors proposed a stereo model that
reconstructs 3D structures not only from disparity informa-
tion of inter-ocular paired regions in stereo images but also
from unpaired regions. In our model, we use depth detection
cells and unpaired dyadic square detection cells. These cells
model some properties of the LGB. If the images are rela-
tively different the system shows instability in regions where
the binocular rivalry is reproduced (particularly in occulted
regions). Ex(xl ,xr) is a function which proposes an initial
matching for each pair (section. 3), such that xl = (xl ,y) is a
pair of dyadic squares in the left retinal images (xr=(pair of
dyadic square in the right retinal images). After computing
Ex, we define a disparity selective cell b(xl ,xr)(Eq. 2), its
value is a binary function equal to 1 when dyadic squares
pairs are E(x) > h and 0 when dyadic pairs are E(x) <= h
(See section 3). Opposite to b(xl ,xr), M(xl/r) is equal to 1
when E(x) <= h and 0 when E(x) > h.

When b(xl ,xr) = 1 both pairs of dyadic squares are
treated by the function d(xl ,xr). This function is a reassess-
ment of the binocular energy of both dyadic squares pairs,

taking into account a set of stereoscopic binocular constraint.
If this energy decreases below a threshold (h) the two pairs of
dyadic square are separated (E(x) = 0). The uniqueness con-
straint (Uu)(Eq. 16) converges to 0 if the binocular matching
of the two dyadic squares are unique otherwise it converges
to a negative value. The occlusion constraint (Uo)(Eq. 17) al-
lows defining a coherent order of dyadic square pairs by their
spatial position. The cohesiveness constraint (Uc)(Eq. 15),
verify the coherence of the matching made. The function
ν is a reassessment of the monocular energy of a dyadic
square pair, which takes three monocular constraints as its
input. The occlusion constraint (Eq. 20) (Vlo/ro) checks if the
dyadic square belongs to an occulted area of the two images.
The cohesiveness constraint (Eq. 19) (Vlc/rc) checks the con-
tinuity between occulted pairs of dyadic squares. The inter-
ocular inhibition constraint (Vli/ri) (Eq. 18) allows detecting
the dyadic squares having instability in the model, partic-
ularly the pairs of dyadic squares which match d(xl ,xr, t)
(Eq. 11) and in the same time they are considered in the
model like unpaired dyadic squares.

d(xl ,xr , t) = max(u(xl ,xr , t)) (11)

∂u(xl ,xr ,t)
∂ t =−u(xl,xr, t)+b(xl,xr)+

2∗Uu+2∗Uo+10∗Uc
(12)

U defines a set of pairs of dyadic squares of the right
image for each pairs in the left image at instant t. This func-
tion takes as input parameters the result obtained at the in-
stant t − 1 and the result obtained by the function b(xl ,xr),
by taking into account stereo constraints. φ(xl/r, t)(Eq. 13)
is the output of an unpaired dyadic square detection cell, rep-
resenting whether a point at xl in the left eye is interocularly
unpaired or not at time t. v determine at a moment t if a co-
efficient is unpaired or not. This function takes as its input
parameters the result obtained by the function M(x∗)(Eq. 3)
and a set of monocular constraints.

φ(xl/r , t) = max(νl/r(xl/r , t)) (13)

∂νl/r(xl/r ,t)

∂ t =−ν(xl/r, t)+ml/r+
2∗Vlu/ru+2∗Vlo/ro+10∗Vlc/rc

(14)

Uc =
le f t
∑

ξl <xl &ξr<xr


w(ξl − xl ,ξr− xr)∗
(1−Pr (ξr ,xr , t))∗{

(1−Pl (ξl ,xl , t))
+φl (xl , t)∗
(1−Gl (ξl ,xl , t))

}
∗

d (ξl ,ξr , t)



+
right
∑

ξl >xl &ξr>xr


w(ξl − xl ,ξr− xr)∗
(1−Pl (ξl ,xl , t))∗{

(1−Pr (ξr ,xr , t))
+φr (xr , t)∗
(1−Gr (ξr ,xr , t))

}
∗

d (ξl ,ξr , t)



(15)

Uu =−
Near
∑

ξl >xl

(1−φl (xl , t)+φr (xr , t))d (ξl ,xr , t)

−
Far
∑

ξl >xl

(1−φl (ξl , t)+φr (xr , t))d (ξl ,xr , t)

−
Near
∑

ξl >xl

(1−φr (xr , t)+φl (xl , t))d (xl ,ξr , t)

−
Far
∑

ξl >xl

(1−φr (ξr , t)+φl (xl , t))d (xl ,ξr , t)

(16)
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Uo =
Far
∑

ξl <xl

φl (ξl , t)(1−Nr (ξl ,xr , t))d (ξl ,xr , t)

+
Far
∑

ξr>xr
φr (ξr , t)(1−Nl (xr ,ξr , t))d (xr ,ξr , t)

+φl (xl , t)Nl(xl ,xr , t)
+φ (xr , t)Nr(xl ,xr , t)

(17)

Vli/ri =− ∑
xr/xl

φl/r
(
xr/l , t

)
d (xl ,xr , t) (18)

Vlc/rc = ∑
xr/l

Nr/l (xl ,xr , t)d (xl ,xr , t) (19)

Vlo/ro =

 1 i f ∃
ξl/r
such

that φl/r(ξl/r , t) = 1
0 otherwise

(20)

w(ξl ,xl ,ξr ,xr) = exp
(
− 1

2σ 2
Γ

Γ
2
)

exp
(
− 1

2σ 2
xc

∆x2
c

)
(21)

w is a weighty function used in the coherence constraint.
This function allows to check the variation of the disparity
between the nearby coefficients. Γ (Eq. 22) represent the
gradient of the disparity used by the function w. where ∆d =
(ξl− xl)− (ξr− xr) and ∆xc = {(ξl− xl)+(ξr− xr)}/2.

Γ =
∣∣∣∣ ∆d

∆xc

∣∣∣∣ (22)

µl/r (Eq. 23 and Eq. 24)corresponds respectively to the
boundaries of the unpaired coefficients in the right and the
left images.

µl (xl , t) = φ (xl −1, t)(1−φ (xl , t)) (23)

µr (xr , t) = φ (xr +1, t)(1−φ (xr , t)) (24)

Pl/r is a binary function, which takes the value 1 if there
are unpaired coefficients, in the neighborhood of a given co-
efficient, otherwise it takes the value 0.

Pl/r
(
ξl/r ,xl/r , t

)
=

 1 i f
φl/r

(
sl/r , t

)
= 1

such that
ξ

l/r
≤ s

l/r
≤ x

l/r
otherwise

(25)

Gl/r is a binary function, which takes the value 1 if there
are boundaries of unpaired coefficients in the neighborhood
of a given coefficient, otherwise it takes the value 0.

Gl/r
(
ξl/r ,xl/r , t

)
=

 1 i f
µl/r

(
sl/r , t

)
= 1

such that
ξ

l/r
< s

l/r
< x

l/r
otherwise

(26)

Contrary to Pl/r, Nl/r is a binary function which takes the
value 1 if it has not unpaired coefficients, in the neighbor-
hood of a given coefficient, otherwise it puts itself in 0.

Nl (xl ,xr , t) =

 1 i f
d (xl ,ξr , t) = 1
such that
ξr < xr

0 otherwise

(27)

Nr (xl ,xr , t) =

 1 i f
d (ξl ,xr , t) = 1
such that
ξl > xl

0 otherwise

(28)

5. EXPERIMENTAL RESULTS

In this section, we present the results obtained with our
stereoscopic matching model. Our model must be used
with rectified stereoscopic images. Two pairs of rectified
stereoscopic images are used to generate the obtained results
(fig. 2.a). In the left image of the second pair, we added
an object which does not exist in the right image, to see
the behavior of our system in the case that the right and the
left images have a major difference. Our model attributes
to the dyadic square pairs (L(x) and R(x)) different colors
according to their matching. So, we have defined four
type of matching in our model. The similar regions, in
both images matched are represented with the blue color.
The occulted regions in both images are colored in black.
These two colors appear in the solution computed by the
BEM model (Section. 3). This solution is optimized by
the refinement model (RBEM). This last one (Section. 4)
models some properties of the LGB. The LGB classifies the
information of both retinal images according to their spatial
position. So, two informations belonging respectively to
the left and the right images and which represent the same
region of the space are put side by side. The association of
three binocular constraints and the monocular constraints
allow our model to converge on this property appropriate for
the LGB.

-a-

-b-

-c-

Fig. 2. Results obtained with our model using stereoscopic
images (a) stereoscopic images (b) solution obtained with
BEM (c) solution obtained with RBEM

Depth detection cells (Eq. 11) exploit the binocular
constraint to increase the binocular energy of dyadic squares
which respect these constraints and to converge the binocular
energy of dyadic squares not respecting these constraints
decreases. Unpaired dyadic square detection cells (Eq. 13)
exploit the monocular constraints to increase the monocular
energy of dyadic squares which respect these constraints
and to converge the monocular energy of dyadic squares
not respecting them decreases. Depth detection cells and
unpaired dyadic square detection cells present an inverse
correlation which varies according to the stereoscopic
images used.

The blue squares represent dyadic squares belonging to
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-a-

-b-

-c-

Fig. 3. Results obtained with our model using stereoscopic
images with very different content (a) stereoscopic images
(b) solution obtained with BEM (c) solution obtained with
RBEM

the left and the right images having a strong binocular energy
(Eq. 11)(fig. 2) and no monocular energy (Eq. 12). The red
dyadic squares have a strong binocular energy and a strong
monocular energy and they are matched with dyadic squares
which have a strong binocular energy and no monocular en-
ergy. These dyadic squares belong to occulted regions in
the left and right images. At the same time, this dyadic
squares are similar to the dyadic squares of the redundant
regions in both images. White dyadic squares have a strong
binocular energy and a strong monocular energy and they
are matched with dyadic squares which have a strong binoc-
ular energy and a strong monocular energy. These dyadic
squares represent a case of instability in our model because
both dyadic squares matched do not belong to both stereo-
scopic images and do not present any correlation with nearby
dyadic squares.
Dyadic squares with the black color have an opposite behav-
ior than white dyadic squares(fig. 3). The binocular energy
and monocular energy of these black dyadic squares are low
or equal to 0. Our model has several parameters which are
fixed according to the stereoscopic images that we use, In
the BEM model we have the parameter (h). If the binocular
energy of a dyadic square couple is greater than the thresh-
old(h) these last ones are matched. In the model of refine-
ment we find that the parameter (h) also appears in the func-
tions (Eq. 10, 11, 13). This parameter does not take the same
value automatically in all the functions. To fix this threshold
we compute the binocular energy for every pair of dyadic
squares (Fig. 4.c). We compute the histogram (Fig. 4) of
the obtained binocular energy map, according to that we de-
fine the compatible threshold for every function. The num-
ber of blue dyadic squares, red dyadic squares, white dyadic
squares and black dyadic squares varies depending on the
threshold (h).

6. CONCLUSION

In this paper, we proposed a model for stereoscopic match-
ing, which can be exploited by 3D applications, as the 3D re-
construction, the stereoscopic coding, the stereoscopic qual-

-a- -b-

-c-

Fig. 4. Histogram of energy (a) left monocular energy
(Eq. 14 for the left image). (b) Right monocular energy
(Eq. 14 for the right image). (c) binocular energy (Eq. 12)

ity assessment. To conceive this model we proceed in two
steps. In the first step, we proposed a model of stereo-
scopic matching based on the human visual system (HVS)
functions, particularly the simple cells and the complex cells
functions, which merge the both retinal images in HVS. In
the second step we proposed a model to refine the result
obtained with the first model. This model uses some LGB
properties. It takes as input a set of binocular stereoscopic
constraints and monocular constraints to refine the matching
computed in the first step. With this refined model, we obtain
a more precise classification according to the type of regions,
to which dyadic squares belong. The future directions of this
work can be summarized by a psychophysical experiment al-
lowing the validation of the proposed model.

REFERENCES

[1] TN. Hubel, DH. Wiesel, “Stereoscopic vision in
macaque monkey. cells sensitive to binocular depth in
area 18 of the macaque monkey cortex,” Nature, vol.
225, no. 41-42, 1970.

[2] GF. Enroth-Cugell C. Campbell, FW. Cooper, “The spa-
tial selectivity of the visual cells of the cat,” J Physiol,
vol. 203, pp. 223–235, 1969.

[3] GC. Freeman-RD. Ohzawa, I. DeAngelis, “Stereoscopic
depth discrimination in the visual cortex: neurons ide-
ally suited as disparity detectors,” Science, vol. 249, pp.
1037–1041, 1990.

[4] M.-C. Larabi, V. Brodbeck, and C. Fernandez-Maloigne,
“A novel approach for constructing an achromatic con-
trast sensitivity function by matching.,” in IEEE Interna-
tional Conference on Image Processing (ICIP), Atlanta,
GA, October 2006, pp. 441–444.

[5] D.J. Fleet, H. Wagner, and D.J. Heeger, “Neural encod-
ing of binocular disparity: Energy model, position shifts
and phase shifts,” Vision Research, vol. 36, no. 12, pp.
1839–1857, 1996.

[6] R Hayashi, S Shimojo, and S Tachi, “An integrative
model of binocular vision: a stereo model utilizing inte-
rocularly unpaired points produces both depth and binoc-
ular rivalry,” Vision Research, vol. 44, no. 3, pp. 2367–
2380, 2004.

1790


