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ABSTRACT

In this paper, we propose a single channel speech enhancement
system where a postfilter, which is derived from a clean speech
codebook, is applied after a log-spectral amplitude estimator. The
primary motivation of this approach is to include prior knowledge
about clean source signals to improve speech enhancement results.
The codebook, which is trained from clean speech database, serves
as clean speech spectral constraints on the enhanced speech. By
using the prior clean source information, the proposed method can
effectively remove the residual noise presented in traditional speech
enhancement algorithms while leaving the speech information in-
tact. Experimental results of the proposed speech enhancement sys-
tem show improvement in residual noise reduction.

1. INTRODUCTION

The problem of single channel speech enhancement, where the
speech signal is corrupted by uncorrelated additive noise, has been
widely studied in the past. One of the most popular methods was
proposed by Ephraim and Malah [1,2]. In [1], a short-time spec-
tral amplitude (STSA) estimator is derived from minimum mean
square error (MMSE) estimation of the spectral amplitude under
the assumption of Gaussian statistical models, where the speech and
noise signals are modeled as statistically independent Gaussian ran-
dom processes. In [2], a log-spectral amplitude (LSA) estimator
based on MMSE estimation is also derived. The STSA or LSA es-
timator is used for the estimation of the short time spectral gain at
each frequency bin, where the noisy spectrum is multiplied by the
gain to estimate the clean speech spectrum. The gain is a function
of the a priori signal-to-noise ratio (SNR) and/or the a posteriori
SNR, where a maximum likelihood (ML) or a “decision-directed”
(DD) approach is used for the a priori SNR estimation [1]. The
LSA estimator is superior to the STSA estimator in that the resid-
ual noise level is lowered without increasing the distortion brought
upon the noise-reduced speech [2]. However, both the ML and DD
SNR estimators cannot completely remove all additive noise and
will produce some artifacts in the signal that at times are consid-
ered objectionable. The DD SNR estimator leaves colorless residual
noise while the ML SNR estimator introduces the annoying “mu-
sical noise”. The musical noise is caused by the lack of spectral
constraints during spectral amplitude estimation. Without sensible
spectral constraints, spectral components in some frequency bins
may be unduly boosted or eliminated, resulting in musical noise.
Several methods that may improve the a priori SNR estimation
have been proposed (e.g., [3-5]). Ren and Johnson [3] estimated
the a priori SNR from an MMSE estimation perspective, which di-
rectly incorporates previous frame information and eliminates the
need of empirical weighting factors in the ML and DD SNR esti-
mators Plapous et al. [4] estimated the a priori SNR in a two-step
approach to eliminate the bias introduced by the DD SNR estimator
and improve the estimator adaptation speed. Cohen [5] proposed
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a relaxed statistical model for speech enhancement to take into ac-
count the time-correlation between successive speech spectral com-
ponents for the a priori SNR estimation. In these methods, either a
Wiener filter [4] or an LSA estimator [3, 5] is used as the spectral
gain function.

All of the approaches mentioned above rely on the accuracy of
the a priori SNR estimation to lower the residual noise level, with-
out directly addressing the removal of residual noise. To address
the residual noise issue, a codebook-based postfiltering method [6]
was proposed recently, where a postfilter was applied after the LSA
estimator. The postfilter is constructed based on a combination of
prototypical clean speech spectra, which are obtained a priori from
clean speech through vector quantization or Gaussian mixture mod-
eling. The postfilter aims at reducing the residual noise or artifacts
so as to make the final result most resembling a clean speech signal
in terms of statistical characteristics. The spectral constraints take
advantage of the frequency dependencies which are not considered
in traditional speech enhancement algorithms, where the spectral
component in each frequency bin is independently estimated. By
imposing the spectral constraints, the spectral peaks of the noisy
signal can be further enhanced. In the meantime, the artifacts can
be reduced.

In [6], the postfilter consists of a weighted sum of the model
spectra derived from the codebook, where the postfilter weights
are obtained based on the likelihood ratio distortion. However,
the processed speech sounds muffled with this approach. Since the
weighted sum of the model spectra incorporates all codewords, it is
equivalent to applying a filter that effectively averages those code-
words to one instance of spectrum. This is effectively applying an
averaged speech spectrum, which has a spectral roll-off at high fre-
quency. In this paper, we derive alternative solutions to the postfil-
ter weights that are mathematically more tractable and alleviate the
muffledness issue. Specifically, postfilter weights based on MMSE
and non-negative least squares (NNLS) are discussed.

The paper is organized as follows. In Section 2, we review
the LSA estimator with ML and DD a priori SNR estimation ap-
proaches. In Section 3, we present the codebook-based postfilter.
Enhancement results are presented in Section 4 and conclusion is
given in Section 5.

2. MMSE LOG-SPECTRAL AMPLITUDE ESTIMATION

Let z[n] = z(nT') and d[n] = d(nT) denote the clean speech and
noise samples, respectively, where 7" is the sampling period and n
is the sample index. Let y[n] = y(nT') denote the noisy speech
samples, which is given by

y[n] = z[n] +d[n].

Let Yi(m) = Rp(m)e’®* (™ X (m) = Ag(m)e?® (™) and
Dy (m) = Ny, (m)e?¥*(™ be the k™ spectral component, in the m™
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analysis window, of the noisy signal y[n], the clean speech signal
z[n], and the noise d[n], respectively.

The objective is to find an estimator X & (m) which minimizes
the conditional expectation of a distortion measure given a set of
noisy spectral measurements. Let Y (m') = {Yi(m'),Yi(m' —
1),...,Y5(m' — L+ 1)} denote a set of L spectral measurements
and d(Xr(m), Xk (m)) denote a given distortion measure between

Xx(m) and X, (m). Therefore, X (m) can be estimated as [5]

Xi(m) = arg;ning{d(Xk(m),X) ‘Yk(m/)},

where £{-} denotes the expectation operator.
Without loss of generality, assuming that the current frame is
m, we define the log spectral amplitude distortion

dLSA(Xk,Xk)E |10gAk—log/1k|2. (1)

Under the assumption of Gaussian statistical model, where the
speech and noise are modeled as statistically independent complex
Gaussian random variables with zero mean, an estimate for Xy is
obtained by applying a spectral gain function to the noisy spectral
measurements

X1, = G(Eryvi) Yis

where the a priori and a posteriori SNRs are defined as

& = Ax (k) /Ap (k).
e = [Yel* /A (K),

a priori SNR,
a posteriori SNR.
Ax (k) = E{|Xx|*} and Ap (k) = E{|Dx|*} denote the variances

of the k™ spectral components of the clean speech and the noise,
respectively. Using (1), the gain function is given by [2]

_ & [Tt
GLSA(Ek,%)—1+€keXp<2/% —dt ),

where vy, is defined by

_ &k

Vi

Therefore, we need to estimate the a priori SNR &, as well as the
noise variance Ap (k). Note that the estimation of noise variance
is not the focus in this paper. It can be estimated by using meth-
ods such as minimum statistics [7] or minima controlled recursive
averaging [8].

2.1 Decision-Directed Estimation

The DD a priori SNR estimation is given by [1]

£DD ‘Xk(m_lﬂg

=a—— <+ (1—-a)P -1
fk (m) aAD(k},m—l) +( Ot) {’Yk(m) }v
where X, (m—1) is the amplitude estimate of the k™ signal spectral
component in the (m — 1)™ analysis frame, o € [0, 1] is a weighting
factor, and P{-} is defined as

P{z} = {g

The name “decision-directed” comes from the fact that the a priori
SNR is updated based on the previous frame’s amplitude estimation.

if x>0,
otherwise.

A b
() ;E;

y[n] . Z[n]
H3(Z) ’utg

Figure 1: A block diagram of the proposed postfiltering model.

2.2 Maximum Likelihood Estimation

The ML estimation is based on estimation of signal variance by
maximizing the joint conditional probability density function (PDF)
of Yy (m) given Ax (k) and Ap (k), which can be written as

AN (k) = argmax { p(Yy(m) | Ax (k), Ap (k) }.
Ax (k)

This estimator results in the following a priori SNR estimator

L—1
M (1m) = L S yk(m—1)—1, if non-negative,
= 1=0

)
0, otherwise,

where estimation is based on L consecutive frames Y (m) =
{Yi(m),Yi(m—1),...,Ys(m — L+ 1)}, which are assumed to be
statistically independent. The actual implementation is a recursive
average given by [1]

Y (m)
B b

Ye(m) = ayk(m—1)+(1-a)
&' (m) = P{r(m) — 1},
where o € [0,1] and 8 > 1 are both weighting factors.

3. THE PROPOSED POSTFILTER

Prototypical clean speech spectra are obtained from a clean speech
database through codebook training. Postfiltering is done by pass-
ing the noisy speech signal or the LSA enhanced speech signal
through a postfilter H(z), which is given by

H(z)= wHi(2),

where M is the number of codewords, H;(e?*) = 1/A;(e?*) is the
frequency response of an all-pole filter corresponding to the model
spectrum derived from the i"™ codeword based on linear prediction
(LP) analysis, and wj is the postfilter weight of the i filter. A block
diagram of this model is shown in Figure 1. Without loss of gen-
erality, we can drop the frame index m and define the postfiltered
spectral estimate at each frequency bin k as

M
Xy =YiH(k) =Y > wiHi(k). )
=1

The name “postfilter” comes from the fact that the postfilter weights
are obtained after the LSA enhancement step. Two possible ways
of obtaining the postfilter weights are discussed below.
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3.1 Postfilter Weights Based on the MMSE Criterion

(2) can be reformulated as

x=Cw,
where X = [X1,X27.,.,XK}T,W = [wl,w27...,wM]T, and Cisa
matrix where the j" column vector is given by
YiH;(1)
Y2H,;(2)
C; = . 5 Vjel,Q,...,M.
Yx H;(K)

Deriving the postfilter weights based on the MMSE criterion leads
to the following optimization problem

WM = argmin £ {||lx — Cwl|* }. 3)

The estimation error is defined as

K

‘= Z|Xk - Xil?,

k=1

e=|x—Cwl|

where K is the total number of frequency bins. The minimum value
of £{e} occurs when the gradient is zero. Evaluating the gradient
and we have

agi)j} 8w ZS{‘X“ } 6{2%{kak}}
=2) wiy mWHRE(MFY
i=1 k=1
—23 " H(WE{R{XYi}}

=0, Vjel,2,...,M,

where §R{ } denotes the real value. Under the assumption of ad-
ditive noise model and that the noise and speech are 1ndependent
Gaussian random variables with zero mean, we have £{|Y%|*} =
Ax (k) 4+ Ap (k) and E{R{X;Yr}} = Ax (k). After Substituting
the above terms into (4), we have

> wi Y Hi(k)H; (k)Ax (k) + Ap (k)] = > H;(k)Ax (k)

which can be rewritten as a system of equations Tw = b, where T
is a matrix with each element given by

Vi,j€1,2,..., M,

tij = tju

=3

ti; is element in the "™
[b1,ba,. .. 7bM]T, where

b=y H;(k)Ax(k),

Therefore, we can use the output of speech enhancement algorithms
to estimate A x (k) and use a noise variance estimate for Ap (k). In
our experiments, Ax (k) for the MMSE postfilter is estimated as

|Grsa (&, 1) Vil 6)

E)[Ax (k) +Ap (k)]

row and 7 column of matrix T, and b =

Vj€1,2,..., M.

>\X( ) |XLSA|2

where &, comes from either the ML or the DD estimation. The
optimal postfilter weights can be determined by solving w =T~ 'b.
Since the postfilter weights obtained from the MMSE criterion can
result in negative values, the overall spectral gain function is chosen

as
M

> ™M H (k)|

i=1

v MMSE
Xk = Yk

3.2 Postfilter Weights Based on Non-negative Least Squares

Non-negativity constraints on the postfilter weights can be imposed
by reformulating (3) as an NNLS problem

WS — argmin|jx — Cw||?, subject to w; > 0,
- (6

Vie1,2,..., M.

By using NNLS to limit the solution space of the postfilter weights,
most of the postfilter weights will be zero in a given frame. There-
fore, zero weights are assigned to the spectral prototypes which de-
viate from the spectral shape of the speech spectrum in that frame.
On the other hand, if the NNLS postfilter is applied to the noisy
speech, only the overall background noise level will be reduced
while the noise between speech harmonics will be retained. There-
fore, the NNLS postfilter is applied after the LSA filtered signal to
suppress the residual noise of the LSA filtered speech

M
NNLS pINLS
X, =X E H;(

In our actual implementation, the following is used to solve (6)

x = Px (1), Ax(2),- - Ax (K],
o (1) + p(1)An (1) H, (1)
() +o(2)Ap ] 2) ‘

cj = : , Vjiel,2,....M,
[Ax(mw(k)kn(mmj(m

where Ax (k) is given by (5) and p(k) € [0,1] is an attenuation
factor which is determined by the residual noise level. The reason
for this modification is that we are reducing only the residual noise
from the LSA filtered speech rather than all the noise from the noisy
speech. For low SNR bins, p(k) has to be small to prevent over
attenuation of the residual noise, while for high SNR bins, the value
of p(k) does not have great impact since Ax (k) > p(k)Ap (k). For
this reason, we choose p(k) = Grsa(€k,Vk)-

4. EXPERIMENTAL RESULTS

Experiments to evaluate the proposed algorithm were performed us-
ing the TIMIT database. The sampling frequency is 16 kHz. A
frame size of 512 samples with 75% overlap was used. A Ham-
ming window was applied on each frame during training and test-
ing. Codebook training was performed using 4620 sentences of
clean speech and testing was performed using 9 noisy speech utter-
ances. The speech database for testing were different from those
used for training. Both male and female speakers were included.
The codebook was trained with truncated cepstral distance distor-
tion measure. A 24" order LP analysis was used and the order of
truncated cepstral coefficients was 48. These parameters are differ-
ent from those in [6] due to different sampling frequencies. Gaus-
sian white noise, F16 cockpit noise, and babble noise were added
to each testing utterance at segmental signal-to-noise ratio (SSNR)
of —5, 0, 5, and 10 dB. Both the DD and the ML a priori SNR
estimation were used for the LSA filter. For the DD estimation, the
weighting factor was a = 0.98, whereas the weighting factors were
a = 0.725 and 8 = 2 for the ML estimation. The speech variance
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Table 1: SSNR improvement for Gaussian white noise.

Table 4: LSD for Gaussian white noise.

Input | LSA- ML- ML- | LSA- DD- DD- Input | LSA- ML- ML- | LSA- DD- DD-
SSNR ML NNLS MMSE DD NNLS MMSE SSNR ML NNLS MMSE DD NNLS MMSE
-5dB 8.01 8.93 9.09 | 7.04 8.66 8.79 -5dB | 532 4.80 490 | 527 4.98 5.01
0dB | 629 7.27 737 | 5.63 7.16 7.44 0dB 3.94 3.56 359 | 3.99 3.77 3.74
5dB | 4.79 5.72 583 | 422 5.56 5.96 5dB | 272 2.49 244 | 3.01 274 2.58
10dB 3.51 4.38 449 | 3.03 4.15 4.63 10dB 1.74 1.63 1.53 | 2.07 1.85 1.63
Table 2: SSNR improvement for F16 cockpit noise. Table 5: LSD for F16 cockpit noise.
Input | LSA- ML- ML- | LSA- DD- DD- Input | LSA- ML- ML- | LSA- DD- DD-
SSNR ML NNLS MMSE DD NNLS MMSE SSNR ML NNLS MMSE DD NNLS MMSE
-5dB | 7.29 8.04 822 | 6.27 7.65 7.85 -5dB | 5.07 4.71 4.71 4.95 4.93 4.84
0dB | 556 6.45 6.56 | 4.87 6.29 6.61 0dB 3.67 3.32 337 | 374 3.55 3.49
5dB | 4.11 5.04 507 | 3.59 491 5.26 5dB | 2.53 2.27 229 | 274 2.47 2.39
10dB | 2.99 3.93 3.91 2.58 3.80 4.10 10dB 1.64 1.44 1.45 1.87 1.59 1.50
Table 3: SSNR improvement for babble noise. Table 6: LSD for babble noise.
Input | LSA- ML- ML- | LSA- DD- DD- Input | LSA- ML- ML- | LSA- DD- DD-
SSNR ML NNLS MMSE DD NNLS MMSE SSNR ML NNLS MMSE DD NNLS MMSE
-5dB | 6.60 7.79 774 | 6.26 7.75 7.86 -5dB | 5.03 4.63 467 | 4.64 4.71 4.64
0dB | 4.88 5.98 624 | 4.78 6.11 6.42 0dB 3.51 3.14 320 | 3.39 3.29 3.21
5dB 3.51 4.65 473 | 342 472 5.12 5dB | 242 2.08 2.15 2.46 2.19 2.16
10dB | 245 3.55 3.55 | 237 3.62 3.94 10dB 1.58 1.33 1.37 1.71 1.40 1.37

estimates for the MMSE postfilter and the NNLS postfilter were
obtained from the LSA filtered speech. The noise variance estimate
was obtained by recursively averaging past spectral power values of
the noise

Ap(k,m) =nAp(k,m —1)+ (1 —n)| Di(m)|?,

where = 0.85.

The MMSE postfilter results were based on a codebook size of
128, while the NNLS postfilter results were based on a codebook
size of 1024. If the codebook size of the MMSE postfilter is too
large, the inverse problem w = T~ 'b can become ill-conditioned.
Therefore, a relatively smaller codebook size for the MMSE postfil-
ter is chosen. On the other hand, the NNLS postfilter does not have
this constraint and a larger codebook size provides finer resolution
for the codeword selection, at the expense of longer computation.

Two objective measurements were chosen for evaluation:
SSNR and log spectral distortion (LSD), which and are defined
as [5]

J—1
1
SSNR = — T < 10log,q — -
J { Sonso (@ln+ 2ge] — dfn+ Xm))2

m=0
J—1 K/2 2 %
LSD= + - ! > [101ogwc{(’“(m)} ,
Jm:0 5 +1 —o CXi(m)

where J is the number of frames, N = 512 is the size of a frame, 7
confines the SNR at each frame to perceptually meaningful range
between 35 dB and —10 dB, i.e.,, T {z} = min{max{x,—10},35}
, and C Xy (m) = max{| X% (m)|?,0} is the clipped spectral power
such that the log-spectrum dynamic range is confined to 50 dB,
where 0 = 1()_50/10r]1i1ax{|X;C (m)|}.

For simplicity, let LSA-DD and LSA-ML denote the LSA fil-
ters using the DD and the ML a priori SNR estimation, respectively.
ML-MMSE and ML-NNLS denote the MMSE and the NNLS post-
filters based on LSA-ML output, while DD-MMSE and DD-NNLS
denote the MMSE and the NNLS postfilters based on LSA-DD out-
put. Table 1, 2, and 3 show the results of SSNR improvement us-
ing LSA filter, NNLS postfilter, and MMSE postfilter. The MMSE
postfilter shows the highest improvement most of the time, while the

DN }

performance of the NNLS postfilter closely follows. Applying the
postfilter always improve SSNR results. Table 4, 5, and 6 show the
LSD for all enhancement algorithms. In most cases, the postfilters
yield lower LSD than the LSA filters.

Figure 2 shows the spectrogram of clean, noisy, LSA filtered
speech, and postfiltered speech in their respective panels, where the
noise type is Gaussian white noise with 5 dB input SSNR. The LSA-
ML filter has a higher output SSNR than the LSA-DD filter at the
expense of musical noise, which can be attributed to isolated fre-
quency spikes in high frequency area. On the other hand, the resid-
ual noise level of the LSA-DD filter is still quite high compared
to LSA-ML. The postfilter removes both the musical noise of the
LSA-ML filter as well as the residual white noise of the LSA-DD
filter. MMSE postfilter performs more aggressively than the NNLS
postfilter in terms of the removal of residual noise, which can also
be verified by the SSNR improvement in Table 1, 2, and 3.

A subjective listening study shows that the proposed method
can successfully remove most of the residual noise from the LSA
filtered speech. Both the MMSE and NNLS postfiltered speech
provides much lower residual noise level than the LSA filtered
speech. Even though the objective scores such as SSNR and LSD
are better on the MMSE postfiltered speech, the NNLS postfiltered
speech sounds more naturally pleasing, since the MMSE postfil-
tered speech may sound too clean and unnatural. On the other hand,
small amount of residual noise from the LSA filtered speech can
still be perceived in the NNLS postfiltered speech, which can also
be observed from Figure 2.

5. CONCLUSION

A speech enhancement system based on a codebook driven postfil-
ter was discussed in the paper. Since the codebook is derived from
a clean speech database, it imposes spectral constraints on either
the noisy speech signal or the LSA filtered signal. The postfilter
consists of a weighted sum of the codeword, where the postfilter
weights are derived from MMSE and NNLS methods. Experimen-
tal results show that the postfilter can effectively remove the residual
noise of the LSA filters. Objective measurements based on SSNR
and LSD also confirm the improved speech enhancement results.
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Figure 2: Spectrograms of clean speech, Gaussian white noise cor-
rupted speech, and enhanced speech at 5 dB input SSNR
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