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ABSTRACT

Markov chains are commonly used in system identification,
modelling and statistical signal processing. In particular
they provide powerful analysis tools for digital communi-
cations, computer networks and flexible manufacturing sys-
tems. For most practical systems the underlying Markov
chain possesses a prohibitively large number of states. This
necessitates state aggregation in an effort to maintain the
computational complexity at manageable levels. In this pa-
per we consider the aggregation of an underlying Markov
chain for a parallel synchronized structure in a closed net-
work. Such Markov chains are encountered in the modelling
of computer networks and manufacturing systems, and do
not have closed-form solutions, requiring numerical compu-
tation. Based on an asymptotic convergence result we pro-
vide a parametric convergence analysis of the transition rates
of the aggregated Markov chain and develop reduced com-
plexity solutions.

1. INTRODUCTION

Markov chains are commonly used to model various pro-
cesses and systems in signal and speech processing, digi-
tal communications, radar, computer networks and flexible
manufacturing, to name just a few. A Markov chain is a
finite random process obeying the memoryless property [1].
A major challenge with using Markov chains in system mod-
elling or analysis is that the number of states of a Markov
chain can easily become prohibitive. A common solution
to such “state-space explosion” is to aggregate the original
Markov chain by grouping subsets of the states into aggre-
gated states, thereby reducing the size (the number of states)
of the Markov chain [2]. A reduction in the number of states
translates into complexity reduction.

In parallel synchronized systems, where the parallel sys-
tems have a common input, but their output can be passed
to the next system only if all systems produce an output, the
presence of synchronization creates considerable difficulty
with the performance analysis [3]. In this paper we con-
sider the aggregation of such a parallel synchronized struc-
ture placed in a closed queueing network. Such structures are
also referred to as closed fork-join nets. Assuming that the
transition rates of packets (or tokens) are Markovian with
negative exponential distribution, the closed fork-join struc-
ture becomes a generalized stochastic Petri net (GSPN) [4],
which is shown at left in Fig. 1. The timed transitions T0,
T1 and T2 are Markovian with transition rates λ0, λ1 and
λ2, respectively. The traditional approach to analysis of the
closed fork-join GSPN involves is to solve the underlying
continuous-time Markov chain (CTMC) for its stationary
distribution. However for a large number of packets (to-
kens) in initial marking, N , the state-space of the underly-
ing CTMC becomes excessively large, rendering the analysis
too complicated if not prohibitive. Therefore the preferred

method of analysis is to aggregate the CTMC as shown at
right in Fig. 1.

The objective of aggregation is to reduce the state-space
of the original CTMC while preserving the stationary to-
ken distribution. For the structure at right in Fig. 1 this is
achieved by having marking-dependent transitions rates for
Tm, denoted λk

m, k = 1, . . . , N . The synchronized transition
in the fork-join structure precludes a product-form solution,
which in turn implies no closed-form solution to the under-
lying CTMC. In [5] stochastic complementation [2] was used
to aggregate the original CTMC and to derive an important
convergence property for the λk

m, providing an approximate
numerical solution for the aggregated Markov chain using a
much smaller Markov chain than the original CTMC.

In this paper we present a parametric analysis with the
aim of deriving parsimonious Markov chain aggregation that
provides significant complexity reduction while preserving
the stationary distribution of the original Markov chain. The
underlying key concept is the asymptotic convergence of the
transition rates, which was proven in [5], but remains to
be scrutinized further to determine the relationship between
original transition rates λ0, λ1 and λ2, and the convergence
behaviour of the aggregated chain’s transition rates λk

m, k =
1, . . . , N . The work presented in this paper elucidates this
important relationship enabling an informed choice for the
number of tokens to be used in the aggregated chain for a
given N .

NP 0T 0 P 1P 2 P 3T 1 T 2P 4 P 5
t 1
t 2 NP 0T 0 P mT m

Figure 1: Aggregation of closed fork-join GSPN—an exam-
ple for aggregated Markov chain.

The paper is organized as follows. Section 2 presents
the original and aggregated Markov chains under consid-
eration. Section 3 reviews the asymptotic convergence re-
sult for marking-dependent transition rates of the aggregated
Markov chain. The parametric convergence analysis of the
marking-dependent transition rates is presented and demon-
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Figure 2: State transition diagrams of the underlying CTMCs for N = 1, 2 and 3.

strated in Section 4. Conclusions are drawn in Section 5.

2. THE ORIGINAL AND AGGREGATED

MARKOV CHAINS

The parallel synchronized system at left in Fig. 1 has an
underlying CTMC with transition diagrams shown in Fig. 2
for N = 1, 2 and 3. For a given number of tokens in initial
marking, N , the number of states of the underlying CTMC
is L = (N + 1)2 states.

Let the L × L matrix Q = [qij ] denote the infinitesimal
generator matrix for the CTMC and let xt ∈ {1, . . . , L} be
the L-state CTMC where t ≥ 0 is a real number. Suppose
that the CTMC is homogeneous and irreducible. Then the
stationary distribution for the CTMC, π, satisfies

π
T
Q = 0

T ,
L

X

i=1

πi = 1, πi > 0 (1)

where

π = [π1, π2, · · · , πL]T (2)

πi = Pr{xt = i}, as t → ∞ (3)

and 0 is a column vector of zeros.

Fig. 3 shows the transition diagram of the underlying
CTMC corresponding to the aggregated structure in Fig. 1.
For N tokens in initial marking, the aggregated CTMC has
N + 1 states compared with L = (N + 1)2 states for the
original CTMC. Let x̃t ∈ {1, . . . , N + 1} be the aggregated
CTMC. The states of the aggregated CTMC are given by
x̃t = N −M(P0)+1. For example, if N = 3 and M(P0) = 2
(where M(P0) denotes the number of tokens in place P0),
the aggregated CTMC is in state 2. The transitions from an
aggregated state with marking M(Pm) to another aggregated
state with M(Pm)− 1 are the marking-dependent transition
rates λk

m, k = 1, . . . , N .

The stationary distribution of the aggregated chain, ξ =
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Figure 3: State transition diagram of the underlying CTMC
for the aggregated Markov chain.
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where
ξi = Pr{x̃t = i} as t → ∞. (5)

The marking-dependent transition rates are unknown and
need to be calculated. Using the local balance equations

ξkλ0 = ξk+1λ
k
m, k = 1, . . . , N (6)

the marking-dependent transition rates can be expressed as

λk
m = λ0

ξk

ξk+1
= λ0

π(k−1)2+1 + π(k−1)2+2 + · · · + πk2

πk2+1 + πk2+2 + · · · + π(k+1)2
. (7)

3. ASYMPTOTIC CONVERGENCE RESULT

In this section we review an important result for the asymp-
totic convergence of λk

m as N grows unbounded. This asymp-
totic convergence result is central to the ensuing parametric
convergence analysis. In [5] it was shown that as λ0 → 0 the

marking-dependent transition rates λk
m become independent

of N . This observation is then extended to the case of λ0 > 0
by exploiting the coupling between a given aggregated state
and the new aggregated states introduced by increasing N .
We formally have the following asymptotic convergence re-
sult:
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Theorem 1 ([5]). As N → ∞ the transition rates of the
aggregated chain converge to constant values. That is,

lim
N→∞

λk=x
m = γx, x = 1, 2, . . .

where γx are the converged transition rates.

An important observation in relation to the convergence
rate of the marking rate transition rates as N is increased is
that decoupling between a given state and new introduced
states occurs faster for smaller λ0, all other parameters re-
maining constant. This leads to the natural conclusion that
λk

m will exhibit faster convergence for smaller λ0 while λ1

and λ2 are fixed. In the next section we provide a detailed
analysis of transition rate convergence.

4. PARAMETRIC CONVERGENCE ANALYSIS

As N is increased, two problems arise in relation to the aggre-
gated transition rates λk

m for k close to N : (1) they become
difficult to calculate as a result of increased computational
complexity, and (2) barring special cases (e.g., λ0 → 0),
they cannot be approximated by resorting to the asymptotic
convergence result since their converged values cannot be
checked. To overcome these shortcomings of the asymptotic
analysis we will make use of the following observation:

Observation 1. As the number of tokens in the merged
place Pm (see Fig. 1) tends to infinity, the parallel synchro-
nized (fork-join) structure behaves like a single delayed tran-
sition with transition rate given by the slowest branch; i.e.,

λk
m → min(λ1, λ2), as N → ∞ and k → N. (8)

This observation allows us to approximate marking-
dependent transition rates λk

m for large k and N by the
smallest firing rate in the parallel branches of the fork-join
structure. Thus asymptotically as N → ∞ the aggregated
CTMC takes the form shown in Fig. 4.
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Figure 4: Aggregated CTMC as N tends to infinity where
λs = min(λ1, λ2).

We will analyze the convergence behaviour of the
marking-dependent transition rates as well as the reducibility
of the aggregated Markov chain under three different condi-
tions for λ0, λ1 and λ2.

4.1 Case I: λ0 < λs

As N is increased this case results in states with small M(P0)
(i.e., large x̃t where x̃t ∈ {1, . . . , N +1}) to have increasingly
smaller state probabilities as a result of reduced likelihood for
them to be visited. The transition diagrams characteristic
of this case as N → ∞ are depicted in Fig. 5. We use
Observation 1 to determine the asymptotic transition rates
for k close to N . Note that in this case the aggregated CTMC
is no longer irreducible as a result of states close to N + 1
not being communicated asymptotically.

For large but finite N , the question of how many states
M in the reduced Markov chain should be retained for a

. . . N + 11 2 3 NN
-

1S t a t e s w i t h z e r o p r o b a b i l i t y. . .1 2 3 M
Figure 5: Reduced aggregated CTMC with M < N+1 states
as N tends to infinity for case I (λ0 < λs).

given desired accuracy measure is answered next. Referring
to the reduced aggregated Markov chain in Fig. 5 we have

λ0ξi = γiξi+1, i = 1, 2, . . . , M − 1 (9a)

M
X

i=1

ξi = 1. (9b)

Solving the above local balance equations for ξM yields

ξM =
1

1 +
PM−1

i=1
ζi

λi

0

, ζi =
i

Y

j=1

γM−j . (10)

The numerical approximation of the reduced aggregated
Markov chain involves selection of M for given γ1, . . . , γM−1

such that ξM is sufficiently small, justifying the elimination
of the remaining states on the grounds of vanishingly small
state probabilities. If M is sufficiently large so that the re-
maining transition rates can be approximated by λs, we have

ξi = ξM

„

λ0

λs

«i−M

, i = M + 1, . . . , N + 1. (11)

Since λ0/λs < 1 the states M + 1, . . . , N + 1 are guaranteed
to have smaller state probabilities than state M :

ξM > ξM+1 > ξM+2 > · · · > ξN+1.

In fact in the limit as N → ∞ we have

lim
N→∞

ξN = 0.

Suppose that we wish to find the smallest M such that
ξM ≤ ǫ for a given threshold ǫ for the approximated reduced
Markov chain. Fig. 6 shows plots of ξM versus M for different
ratios λ0/λs computed using (10) as N → ∞. We observe
that as λ0/λs gets smaller, the aggregated Markov chain can
be approximated by a smaller Markov chain by selecting a
smaller M for a fixed ǫ. Conversely, larger λ0/λs (subject to
λ0/λs < 1) requires larger M . For finite N the same plots
can be used approximately as long as N is sufficiently large.

For given λ0, λ1, λ2, N and ǫ where λ0/λs < 1, i.e.,
case I applies, a computational method for finding approx-
imate aggregation can be conceived as follows: (i) compute

λk
m, k = 1, . . . , Nc, for Nc < N tokens in initial marking,

where Nc is the maximum number of tokens that can be

1156



5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M

ξ M

λ
0
/λ

s
 = 0.7

λ
0
/λ

s
 = 0.8

λ
0
/λ

s
 = 0.4

λ
0
/λ

s
 = 0.3

λ
0
/λ

s
 = 0.6

λ
0
/λ

s
 = 0.5

Figure 6: Plot of ξM versus M for different λ0/λs as N → ∞
(λ1 = 4, λ2 = 5). As the ratio λ0/λs gets smaller, smaller
M is needed to achieve ξM ≤ ǫ for a given ǫ.

handled under the complexity constraint, (ii) approximate
ξM using

ξ̂M =
1

1 +
PM−1

i=1
ζ̂i

λi

0

, ζ̂i =
i

Y

j=1

λk=M−j
m (12)

(iii) find smallest M satisfying ξ̂M ≤ ǫ. As an example,
suppose N = 50, λ0 = 0.5, λ1 = 8, λ2 = 3, Nc = 20
and ǫ = 10−4. Using the above approach we have ob-
tained M = 7 and the sum of absolute differences between
λk

m, k = 1, . . . , M , for Nc tokens and the true marking-
dependent transition rates was 5.4 × 10−11. The reduced
Markov chain that was constructed using Nc = 20 tokens
has only 7 states compared with (N + 1)2 = 2601 states for
the original Markov chain.

4.2 Case II: λ0 > λs

Asymptotically this case results in small states to have van-
ishing state probabilities as illustrated in Fig. 7.. . . N + 11 2 3 NN

-
1S t a t e s w i t h z e r o p r o b a b i l i t y . . .K K + 1 K + 2 N + 1

Figure 7: Reduced aggregated CTMC with N −K +2 states
as N tends to infinity for case II (λ0 > λs).
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Figure 8: Plot of ξK versus D = N − K for different λ0/λs

(λ1 = 4, λ2 = 5). As the ratio λ0/λs gets smaller, larger D
would be required to achieve ξK ≤ ǫ for a given ǫ.

Referring to the reduced Markov chain in Fig. 7 we have

λ0ξi = λsξi+1, i = K, K + 1, . . . , N (13)

N+1
X

i=K

ξi = 1. (14)

Solving the above equations for ξK we obtain

ξK =
1

PN−K+1
i=0

“

λ0

λs

”i
=

λ0

λs
− 1

“

λ0

λs

”N−K+2

− 1
. (15)

We observe that ξi monotonically increases with i and that
ξK only depends on the difference between N and K rather
than their individual values so long as N is sufficiently large.

For sufficiently large N and given transition rates λ0,
λ1 and λ2 complying with λ0 > λs, a reduced aggregated
CTMC can be approximately obtained by setting K to a
value that returns a sufficiently small ξK ; i.e., ξK ≤ ǫ. It is
clear from (15) that, for a fixed threshold ǫ, larger D = N−K
would be necessary for smaller λ0/λs (λ0/λs > 1). This is
illustrated in Fig. 8.

An approximate reduced aggregation can be obtained
simply by determining the smallest D for given ǫ and λ0/λs

using (15). Thus the computational procedure for case II is
much simpler than that for case I, provided that N is suf-
ficiently large to warrant approximation of λk

m by λs. To
demonstrate this, suppose N = 50, λ0 = 5, λ1 = 8, λ2 = 3
and ǫ = 10−4, for which we have obtained K = 34 and the
sum of absolute differences between λk

m, k = K, . . . , N , (i.e.,
the true marking-dependent transition rates) and the asymp-
totic values λs was only 8.9 × 10−10. The reduced Markov
chain has D + 2 = 18 states, which is a significant reduction
compared with the original Markov chain.

4.3 Case III: λ0 = λs

No states can be assumed to have vanishing state probabili-
ties in this case. Fig. 9 illustrates the transition diagram of
the aggregated CTMC as N tends to infinity. Even though
the aggregated Markov chain cannot be reduced, the asymp-
totic convergence result for the marking-dependent transi-
tion rates still holds. To see this first consider the local
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Figure 9: Aggregated CTMC as N tends to infinity for
case III (λ0 = λs). No reduction is possible in this case
since state probabilities do not vanish.

balance equations for a given N :

λ0ξ1 = γ1ξ2

λ0ξ2 = γ2ξ3

λ0ξ3 = γ3ξ4

...

λ0ξN−2 = λ0ξN−1

λ0ξN−1 = λ0ξN

λ0ξN = λ0ξN+1

and
N

X

i=1

ξi = 1.

The local balance equations imply that states, for which Ob-
servation 1 is valid, have identical state probabilities:

· · · = ξN−2 = ξN−1 = ξN = ξN+1.

We will now show that asymptotic convergence of transi-
tion rates to γi and validity of Observation 1 for large states
can be maintained even if state probabilities do not exhibit
any convergence. Consider increasing the number of tokens
to N + 1. To see the effect of this on the state probabilities
in conjunction with the asymptotic result (8), write

λ0ξ
′

1 = γ1ξ
′

2

λ0ξ
′

2 = γ2ξ
′

3

λ0ξ
′

3 = γ3ξ
′

4

...

λ0ξ
′

N−2 = λ0ξ
′

N−1

λ0ξ
′

N−1 = λ0ξ
′

N

λ0ξ
′

N = λ0ξ
′

N+1

λ0ξ
′

N+1 = λ0ξ
′

N+2

where the ξ′i are the state probabilities after increasing the
number of token in initial marking from N to N + 1. To
satisfy the unit sum of state probabilities we have

ξ′N+2 = αξN+1, 1 − α = ξ′N+2, 0 < α < 1 (16)

where α is a scaling factor that multiplies all state prob-
abilities ξi in order to allow the new state N + 2 to have
a non-zero state probability that is equal to the new state
probability of state N + 1. This way none of the converged
transition rates are affected by the new state. From (16) we
have

α =
1

1 + ξN+1
, ξ′N+2 =

ξN+1

1 + ξN+1
.

For given λ0, λ1, λ2, N and Nc where λ0 = λs, the fol-
lowing computational procedure can be used to approximate

the solution to aggregation: (i) compute λk
m, k = 1, . . . , Nc,

for Nc < N tokens in initial marking, (ii) set the remain-
ing transition rates λk

m = λ0, k = Nc + 1, . . . , N . Suppose
N = 50, λ0 = 3, λ1 = 8, λ2 = 3 and Nc = 20. Using the
above procedure the sum of absolute differences between the
approximated and true marking-dependent transition rates
was 2.1 × 10−8.
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6. CONCLUSIONS

We have presented a parametric convergence analysis for the
transition rates of an aggregated Markov chain encountered
in the modelling of parallel synchronized systems. The key to
aggregation is to cluster the states of the underlying Markov
chain into aggregated states in a systematic way that lends
itself easily to mathematical analysis. Since parallel syn-
chronized systems do not have product-form solutions [6], no
closed-form solution can be found to determine their station-
ary distribution among other things. In the paper we have
utilized an asymptotic convergence result for transition rates
of the aggregated Markov chain to ease the computational
burden associated with the solution. Three different cases
have been identified in relation to the transition rates of the
original Markov chain. For two of these cases whereby the
slowest parallel branch has different transition rates to the
transition rate of the initial place, we have shown that the
aggregated chain can be reduced as a result of certain aggre-
gated states having vanishing state probabilities. The third
case where the slowest parallel branch and the initial place
have identical transition rates does not allow any reduction.
For each of these cases we have provided computational pro-
cedures and demonstrated their effectiveness by numerical
examples.
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