
SPARSE AUDIO CODING VIA TARGETED DITHERING AND COMBINATORIAL
DECODING

F. Mustiere1,2, H. Najaf-Zadeh1, R. Pichevar1, H. Lahdili1, L. Thibault1, M. Bouchard2

1Communications Research Centre, Advanced Audio Systems
3701 Carling Avenue, K2H 8S2, Ottawa, Canada

2School of Information Technology and Engineering,
University of Ottawa, Ottawa, ON, K1N 6N5, Canada.

ABSTRACT

We present a novel paradigm for sparse audio signal coding.
After annihilating unperceivable components in some trans-
form domain, the encoder buffers the resulting sparse vector
into small non-overlapping frames. In each frame, the active
elements’ amplitudes are quantized, and with the help of a
priori known unquantized “filler” vectors (whose values are
placed in inactive positions), their position is encoded such
that a certain function f of the filled vector is nearly integer
valued. For this purpose, the quantized values of the sparse
frames are pre-adjusted in a controlled manner with distor-
tion in mind (hence the name “targeted dithering”). The de-
coder then progresses through the possible combinations of
the nonzero elements, and verifies with the filler vector which
of these combinations produces an integer valued f , thereby
retrieving the active elements’ positions. In preliminary tests,
good quality can be obtained by encoding 44.1 kHz signals
with less than 50 kbps.

1. INTRODUCTION

This paper addresses the problem of encoding together both
the position and the values of nonzero/active elements in a
so-called sparse vector, that is, composed of a majority of
zero components. Such a situation arises in various appli-
cations; most notably, many physical signals can be repre-
sented as linear combinations of only a few elementary func-
tions, carefully selected amongst a potentially large collec-
tion of them. As an important example of generating and
handling sparse vectors in the real-world, transform audio
or image coding systems are currently extensively used in
mainstream areas such as digital television/ telephony or data
archiving/compression. As an illustration, audio coding sys-
tems are essentially based on the following ideas [1,2]. Given
a vector n representing the signal of concern, the first step
consists of formulating n in some transform domain, via a
transformation function ψ(.) as follows:

x= ψ (n) (1)

where the resulting length-L vector x contains only M ≪ L
significant elements, where the level of significance is de-
termined by either some perceptual or mathematical criteria
(Strictly speaking, L may be larger than the initial length of
n, and in fact x may be multi-dimensional, but we assume
in the context of this paper that higher-dimensional data has
been vectorized). The property of x only containing M ≪ L
non-negligible elements is referred to as its sparseness, and
is at the foundation of transform coding.

Practically speaking, having chosen ψ and possibly M in
advance, the steps for encoding and storing the signal n are
often similar to:

1. Transforming n into x,

2. Perceptually/mathematically thresholding the vector x to
retain only M non-zero values, yielding x̂.

3. Properly quantizing the M non-zero values of x̂, and then
encoding them as well as their position.

At the receiver (or at playback in the context of audio), the
procedure amounts to decoding the quantized values and
positions, placing them into a vector of length L and then
applying the inverse transformation to recover an approxi-
mation n̂ of n. One of the unfortunate problems inherent to
handling and transmitting sparse vectors, regardless of how
they were obtained, lies in the potentially large overhead
required to encode the positions of the active elements [3]
– a uninformed approach would require a binary vector of

length ⌈log2

(

L
M

)

⌉ ≤ L. In this paper, we propose to embed
some of the position information within the quantized
non-zero values of x̂ so as to reduce the size of the overhead.
To do so, these quantized values are adjusted at the encoder
so as to minimize a certain function (described below),
which depends on both these values and the positions of
the active elements in x. Of course, the values cannot be
blindly adjusted and we suggest a way of performing the
optimization in a “perceptually controlled” manner. The
method is therefore combinatoric, in the sense that the
decoder must progress through the (reduced) set of possible
positions, and verify which position minimizes the above
mentioned function given the pre-adjusted quantized values.

The paper is organized as follows. In Section 2, the en-
coder side is described in a generic manner, with three steps
detailed and emphasis on the pre-adjustment of the quantized
values. Next, in Section 3, the decoder side is explained. Fi-
nally, Section 4 some experimental results are shown with a
preliminary setup, showing the potential of the paradigm.

2. ENCODER

2.1 Sparse representation in a transform domain

The first two “traditional” transform coding steps broadly
presented in our introduction are followed here as well, al-
though we insist that the solution proposed in this paper can
be applied regardless of the way that the working sparse vec-
tor is obtained. Nevertheless, using the notation introduced
in the introduction, in most situations depending on the trans-
formation chosen the goal is to assimilate x to a sparse vec-
tor by annihilating as many of its components as possible
while retaining perceptual transparency. Representing physi-
cal signals into a “sparse domain” is an active research field;
one can find examples of useful transformations in [1, 4, 5].
When choosing a transformation, there are several factors to

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

© EURASIP, 2010 ISSN 2076-1465 249

consider in order to reach a compromise suitable for com-
pression. For example, while a certain representation might
be sparser than an other one, it might also require a greater
precision (i.e., a finer quantization) and therefore more bits
per active element.

2.2 Decomposition into small non-overlapping frames

Due to the combinatorial nature of the decoder, it is recom-
mended here to further decompose (after transformation) the
obtained sparse vector x into non-overlapping subframes of
smaller length, so as to reduce the total amount of possible
positions (i.e. the search space for the decoder) to a man-

ageable number1. However, there is once again an accept-
able compromise to reach: first, as it will be seen below, a
header is required on each subframe, and therefore multi-
plying the subframes may also increase the global overhead.
Secondly, with overly small subframes, the likelihood of a
possible transparent pre-adjustment is decreased, as several
subframes will only contain few active elements to pre-adjust
(the reason behind this will be clear after the next Section).

2.3 Pre-adjustment or “smart dithering”

In this Section, we propose a way to embed some information
about the position of each nonzero element into their ampli-
tude. To do this, for a given subframe s of length N and K
active elements, let us define the following:

• Let the vector p j, j ∈ {1, . . . ,
(

N
K

)

} contain K distinct in-
tegers in increasing order ranging from 1 to N. In other
words, pk is a possible support vector, also referred to as
position vector below.

• sq is the quantized version of s. Moreover, let integer i

denote the ith quantization level, and q(i) its correspond-
ing real value.

• Next, let δ̂ be a length K vector defined relatively to sq

as follows. If p j is the position vector associated to sq,
then for every k ∈ {1, . . . ,K}, if sq(p j(k)) = q(i), then

δ̂ (k) = q(i+ 1)− q(i). Similarly, δ̌ (k) = q(i− 1)− q(i).
• Let v̄ be a length N, real-valued, and “full” vector (con-

taining no zero elements) that is considered to be a priori
known (its choice will be discussed later on). Accord-
ingly, define v relatively to sq and v̄ as follows. For every
n, if n is contained in p j, then v(n) = 0, else v(n) = v̄(n).
In the following, v will be termed a filler vector.

• Let T denote a selected target number (the choice of
which will be further discussed below), in our context
an integer, and ε denote a small positive real number.

Now, define an arbitrary “targeting” function f (sq,v) =
T + e, designed such that the expected error e is rela-
tively small to begin with. For example, our implementa-
tions use either f (sq,v) = ∑n (sq(n)+v(n)) or f (sq,v) =

∑n

(∣

∣sq(n)
∣

∣+ |v(n)|
)

, and T = [f (sq,v)] ∈ N (the value of

the nearest integer to f (sq,v)). The goal is here to minimize
e by adjusting in a controlled manner the values of sq. Before
explaining how to do this, let us show why this is precisely
why the decoder will be able to retrieve p j. Suppose that
sq has been successfully adjusted, and accordingly e is very
small. The K values of the ajusted sq are then sent to the
decoder. Then, with only these K values, the decoder can go

1whether a number is deemed “manageable” depends of course on the
context and the available computational resources.

through the set of possible positions, from each of which a
particular v is defined, and stop whenever it meets one such
that f (sq,v)− [f (sq,v)] is smaller than a certain threshold.

In order to minimize e, we propose to cast the problem as
a binary linear program as follows. Let Φ and y be defined
as:

Φ =





IK IK

δ̂ δ̌

−δ̂ −δ̌



 where IK is the K ×K identity matrix (2)

y = [1,1, . . . 1,T − f (sq,v)+ ε,−T + f (sq,v)+ ε]T (3)

Then, the idea consists in solving for the 2K-long binary vec-
tor û as the solution of the problem below:

argmin‖u‖0 subject to Φu≤ y (4)

Then, the vector sq can then simply be adjusted by increasing
by one level its values corresponding to the nonzero entries
in the first K elements of û, and decreasing by one level those
corresponding to the nonzero entries in the last K elements
of û.

Several remarks must be made regarding the problem
given in Eqn. 4:

• While the problem is NP-complete, it can be solved ef-
ficiently by Implicit Enumeration, or the Balas Additive
Algorithm, originating from [6]. The Balas Additive Al-
gorithm is in essence a branch-and-bound method based
on efficient heuristics.

• From its formulation, the problem is always feasible for
ε = e (the solution is then the trivial solution u= 0). Ide-
ally, ε should however be as low as possible – but if a
certain choice for ε makes the problem infeasible, an-
other slightly larger value can be attempted, and so on
until the problem is solvable.

• As shown in Eqn. 4, we seek the solution that mini-
mizes the required changes in sq (with binary vectors,
note that the 0-norm is identical to the 1-norm). In par-
ticular, this excludes other solutions obtained from need-
lessly exchanging two initially adjacent levels.

• Moreover, it is simple to control which element can
be adjusted or not: excluding a certain element simply
means that the vector u to solve for has a reduced dimen-
sion (by 2 elements). In the same vein, a certain element
can be allowed to be adjusted only towards one direction.

• From the form of Eqns. 2 and 3, as required, one single
element of sq cannot be simulaneously increased and de-
creased (in other words, the first and last K elements of
u are mutually exclusive).

• If the transformation of Eqn. 1 allows for a larger error
tolerance than one quantization step in the amplitude of
some or all components, the procedure can be repeated,
each time excluding the elements whose amplitude have
been maximally modified. The initial value f (sq,v) is
simply recomputed at the beginning of each new itera-
tion.

In Figure 1, a certain vector of length 24 is subjected to the
above procedure, and the optimization is successful in driv-
ing the sum of quantized values very close to the integer 2. It
is clear that if (i) the quantization is very coarse, and/or (ii)
the vector s is very sparse, then one can think of many ex-
amples where the above procedure will not succeed satisfac-
torily. To address the first concern, we propose to include a

250

header with some elements of information regarding the par-
ticular error that should be observed by the decoder when the
correct position vector is being tested (see Section 2.5). Al-
ternatively, a certain bank of appropriate filler vectors, a pri-
ori known to both the encoder and the decoder, may be used
to select one that will require the least amount of changes and
guarantee that the procedure will succeed (some discussion
regarding filler vectors is given in Section 2.4). Regarding
the second concern, as discussed in Section 4, this procedure
is chosen to be only implemented for cases with K roughly
between 0.3N and 0.7N, where the “direct” encoding of the
active positions would begin to be the costliest. In the context
of small subframes (as prescribed in Section 2.2), when there
are too little active elements (respectively more than a certain
amount), it is advantageous to encode directly the positions
of the non-zero elements (respectively of the zero elements).

0 5 10 15 20 25
−0.04

−0.02

0

0.02

0.04

0.06

Index

A
m

p
lit

u
d
e

Unquantized original vector s

0 5 10 15 20 25
−0.04

−0.02

0

0.02

0.04

0.06

Index

Quantized and adjusted vectors

Quantized

Quantized ajusted

Figure 1: Example of pre-adjustment of a quantized vector.
On the top graph, the original, unquantized vector is shown.
On the bottom graph, both the quantized and the quantized
“adjusted” vectors are shown. In this particular case, 8-bit
scalar quantization is used, and only one round of optimiza-

tion was applied with ε = 5× 10−5 and T = 2. The filler
vector used v is normally distributed around 0, and the unad-
justed vector has f (sq,v)≃ 2.28987. For the adjusted signal,
this value is about 1.99997.

2.4 Choice of filler vectors and targeting function

For the given “smart dithering” procedure to be able to find
an appropriate solution with a single or few iterations, the
choice of a targeting function and the design of appropri-
ate filler vectors is important. An “appropriate” filler vec-
tor v is defined, relatively to the targeting function f and
the amplitudes in sq, as one which will not only render the
optimization problem in Eqn. 4 feasible with the smallest
ε and the smallest amount of changes in sq, but also will
yield significantly different function values for an incorrect
positioning of the active elements in a blank length-N vector.
While we have reached an operational solution, this problem

is currently under investigation. We recapitulate here a few
findings and ideas:

• Given f , these appropriate filler vectors must depend on
the statistics of sq. While our current implementation
uses a fixed set of filler vectors (up to 8), the idea of adap-
tive filler vectors is therefore appealing.

• At this point, we heuristically find that if sq is approxi-

mately zero-mean and has a variance of σ2, then drawing
v ∼ N (0,10×σ2) can provide some good robustness.
A relatively larger variance ensures that incorrect posi-
tions will be unequivocally excluded by the decoder.

• To guarantee that an appropriate filler vector will be
available during encoding, a small bank of 8 vectors
drawn from N (0,10×σ2) are used in our implementa-
tion. Thus, currently three bits are required to be included
in a header for each subframe. The design and unsuper-
vised adaptation of a single filler vector would eliminate
the need for these three bits.

2.5 Including information in headers

Supposing the optimization above was sufficiently success-
ful to guarantee the recovery of the positions (Figure 1 rep-
resents an example of such a case), then the decoder must
simply know how many active elements are present in the
incoming subframe. Noting that the encoder can easily ver-
ify whether the decoder will be able to correctly retrieve the
positions or not, more information can be included if nec-
essary. For example, some hints on the number of trials
required to reach the correct solution can be provided. If
the quantization is relatively coarse, the optimized value of
f (sq,v)− [f (sq,v)] may either still be relatively large and/or
another small enough error might be encountered – for an in-
correct position vector – before the correct one is tested. In
such cases, it is proposed to provide in a header some infor-
mation about the particular error corresponding to the right
position vector. For example, in one of our implementations,
we encode the exponent of the error seen during encoding.
Additionally, depending on the case it may help to let the de-
coder know what the target integer is. Finally, as explained
in the previous Section, a bank of 8 seeds is used during en-
coding, and thus the decoder must know which one was used
for each subframe. In Section 4.2, some ideas to encode effi-
ciently such information in an operational solution are given.

3. DECODER

The decoder is in essence very simple, and is described as
follows. For each subframe, it must:

1. read the header to determine the amount K of active el-
ements, as well as any other information if present (see
Section 2.5),

2. decode the K amplitudes of the nonzero elements,

3. go through the list of possible position vectorsp: for each
possibility, it must extract the corresponding filler vector
v, place the K amplitudes in a vector s and test how close
f (s,v)− [f (s,v)] is to zero – until a low-enough error is
encountered.

A certain type of list exhaustion must be defined and ac-
cordingly, both for complexity evaluation and for potential
header information embedding, the required amount of tri-
als to reach the correct solution must be determined. For
simplicity, to go through the possibilities, the procedure is

251

Trial number Configuration Trial number Configuration

1 11000 6 01010
2 10100 7 01001
3 10010 8 00110
4 10001 9 00101
5 01100 10 00011

Table 1: An example of a possible list exhaustion order for
the decoder

defined in Table 1 on an example with K = 2 and N = 5.
According to the above-defined procedure for progressing
through the possibilities for the position vector, given a cer-
tain configuration the corresponding trial number can be ob-
tained back as follows. For a given p, let z be a length
K vector containing the number of zeros at the left of each
nonzero element (for example, for the configuration 010010,

z = [1,2]). Define also ci = ∑i−1
k=1 z(k) (with c1 = 0). Then,

the number of trials required is:

nt(p) = 1+
K

∑
i=1

z(i)

∑
j=1

(

N − i− j− ci+ 1

K − i

)

(5)

From Eqn. 5, it is clear that the first elements of z have a
very large impact on nt(p), whereas the last few have much
less impact on it. In practice, it can be advantageous for the
encoder to reserve a bit for flipping or circularly shifting the
current subframe, so as to reduce the amount of trials wasted
by the decoder.

4. SOME RESULTS WITH A PRACTICAL SETUP

It is proposed to encode a 7.6-seconds speech signal with a
sampling frequency of 44.1 kHz. In this test signal, a fe-
male speaker utters the following sentence: “To administer
medicine to animals is frequently a very difficult matter, yet
sometimes it’s necessary to do so”.

4.1 Perceptual thresholding in the MDCT domain

In order to obtain a sparse representation for the input signal,
it is first decomposed by means of a Modified Discrete Co-
sine Transform (MDCT) using frames of length 1024 and a
Kaiser-Bessel derived window. Next, the simultaneous fre-
quency masking threshold of the signal is obtained. More
specifically, the threshold used in the ISO MPEG-1 layer 1
psychoacoustic model 1 is used (see [2] for a description of
both the MDCT and the steps involved in the computation
of the masking threshold). Using the relationship between
the DFT and the MDCT (see [7]), all the MDCT coefficients
below the masking threshold are set to 0. With this method,
a nearly-transparent audio quality can be achieved by drop-
ping up to 75% of the coefficients. In our specific speech-
only case, only 30406 coefficients are retained (for an initial
length of 335348). During the above perceptual threshold-
ing, each remaining coefficient is also tagged with an im-
portance factor determined by the distance from the masking
threshold. Then, the encoder is instructed not to adjust the
quantized values of the most perceptually important MDCT
coefficients.

4.2 A possible bit allocation scheme

In our preliminary tests, the entire MDCT matrix obtained
in the previous Section is vectorized and decomposed into
small subframes of length N. Specifically, the subframes
have a length N = 24. Such a small number ensures that
in the worst case scenario, about 2.7 million iterations will
be required by the decoder. However, with the dedicated bit
allocation described below, the average amount of iterations
that is observed in our tests is about 150000.

The header begins with the following information (re-
ferred to as the “a” bits below):

• “00” to indicate that there are no active elements in the
current subframe.

• “01” to indicate that there are no active elements in the
next 6 subframes.

• “1” to indicate that there is at least one active element in
the current subframe.

The above is advantageous for the MDCT transformation
described in 4.1, as there are often multiple consecutive
inactive subframes.

In the case where at least 1 element is present, the header
is followed by 5 bits (b1 to b5). If b is the integer value of
b1b2b3b4b5, then b = i− 1, 1 ≤ i ≤ 24 indicates that there
are i nonzero elements in the subframe. Additionally:

• i = 25 indicates that there are 12 active elements and the
first element is in the first position.

• Similarly, with i = 26 up to 28 indicates that the first ele-
ment is in the second up to fourth position. This implies
that i = 12 means that the 12 active elements are located
after the fourth position.

• Moreover, i = 29 resp. 30 indicate that there are 11 active
elements and the first element is in the first resp. second
position. Again, i = 11 then means that the 12 active el-
ements are necessarily located after the second position.

• Finally, i = 31 and 32 give the same information for 13
elements.

The above considerably reduces the number of iterations
required at the decoder. Referring to Eqn. 5, the above re-
duces the value of z(1) for the three most problematic cases
(i.e., the three cases with the largest search space) of 11,
12, and 13 active elements within the subframes of length 24.

Next, a single bit c indicates whether or not the subframe
was flipped by the encoder (whichever resulted in a smaller
required amount of iterations for the decoder). Moving
along, a set of “d” bits then contains some information
about the position of the nonzero elements. Here, because
of the fact that directly encoding the position of the nonzero
(resp. zero) elements is fairly inexpensive for 1 ≤ K ≤ 4
(resp. 20 ≤ K ≤ 23), it is chosen to only apply the “smart
dithering” method for 5 ≤ K ≤ 19. For 2 ≤ K ≤ 4 (resp.
20 ≤ K ≤ 22), 3K (resp. 3(N − K)) bits are assigned to
pointing to the locations of the nonzero (resp. zero) elements
by Run-Length-Encoding (RLE). When K = 1 or K = 23,
4 bits are used. Bit c is still consistent in that it indicates
from which end of the subframe to begin the RLE. Clearly,
if K = 24 no bits “d” are required at all. When 5 ≤ K ≤ 19,
the “d” bits represent some partial information about the
position vector. As previously mentioned in Section 2.5,
it is chosen here to use a bank of 8 filler vectors, and to

252

facilitate decoding we also send the absolute value of the
target integer. Three bits are used to point to the right filler
vector, and two bits are used for the absolute value of the
target integer (from 0 to 3 or more).

Subsequently, the K required amplitudes are concate-
nated and the subframe code ends. Regarding the amount of
bits required for representing these amplitudes, at this point
we propose the following: for 5 ≤ K ≤ 10, 8 bits are used,
and otherwise 7 bits are used. The reason behind this choice
is related to the observation that the sum of (filled) sparser
vectors is more difficult to drive to integer values, due to the
reduced amount of possible changes. This is counterbalanced
in our implementation by the use of more quantization levels.

4.3 Simulation results

For the speech signal under consideration, after perceptual
thresholding and encoding, the distribution of frames and bit
count is given in Table 2. According to Table 2, the total bit

K Subframes Req. bits K Subframes Req. bits
0 9908 6546 13 158 16274
1 412 7416 14 149 16390
2 352 9504 15 115 13455
3 309 11433 16 96 11904
4 311 14617 17 69 9039
5 289 15028 18 34 4692
6 264 15840 19 27 3915
7 295 20060 20 13 2067
8 223 16948 21 8 1304
9 276 23184 22 4 668
10 249 22908 23 5 90
11 211 18779 24 0 0
12 218 20928 Total 13995 282989

Table 2: Distribution of active elements. When K = 0, the
encoder finds a total of 1327 blocks of 6 consecutive empty
frames .

count is 282989, which amounts to approximately 37 kbps.

As the next Section will outline, there is significant room
for improvement in multiple areas, nevertheless our infor-
mal listening tests indicate that the recovered speech with
adjusted subframes is nearly undistinguishable from a refer-
ence case obtained using unadjusted subframes.

5. CONCLUSION AND FUTURE WORK

We proposed in this paper a different approach to audio
signal transform encoding/decoding. A certain position-
dependent structure is forced upon the quantized ampli-
tudes of the nonzero elements within small, non-overlapping
frames, thereby creating a detection criterion for the decoder
that is embedded in these values. To do this, a so-called tar-
geting function, accompanied by a filler vector, are designed
and used to choose a target value for the quantized ampli-
tudes. The problem of adjusting these amplitudes in a per-
ceptually reasonable manner is posed in terms of a Binary In-
teger Linear Program, which can be efficiently solved while
applying constraints on the tolerable error in each amplitude
to adjust. The decoder can then test possible combinations
of positions and picks the correct one by computing for each
possibility the value of the targeting function and verifying
that it is close to the expected target value. There are many
areas of improvements currently being investigated:

• A study of the appropriateness of the targeting function
f and filler vectors v is required; doing so will acceler-
ate the optimization, minimize the required adjustments
and shorten the subframe headers. In parallel, it may not
be the best choice to require integer targets; rather, the
encoder could encode most common target values.

• The decoding method is, at this stage, computationally
demanding. One could however think of more adequate
ways of exploring the number of possibilities. For exam-
ple, given the read amplitudes of the nonzero components
and the knowledge of the filler vectors, several possibil-
ities could be directly excluded. This could be further
reduced if the target value is known by the decoder.

• Rather than including additional information in headers
in order to guarantee that the decoder will successfully
retrieve the correct positions (see Section 2.5), it may be
more advantageous to merely include one bit to indicate
whether the operation will or will not succeed without ex-
tra information. In the latter situation, the encoder could
then resort to traditional techniques such as RLE. The
above depends on an analysis of the proportion of prob-
lematic subframes.

• In order to further reduce the header size, it might be
advantageous to exploit the structure of the sparse vec-
tors – for example, in the MDCT matrix case, neighbour
columns are often correlated.

• Finally, some more suitable and less primitive bit alloca-
tion schemes are being studies as well.

REFERENCES

[1] S. Mallat, A Wavelet Tour of Signal Processing. New
York: Academic, 1999.

[2] A. Spanias, Audio Signal Processing and Coding, Wiley-
Interscience, 2007.

[3] R. G. Baraniuk, “Compressive Sensing,” Lecture Notes
in IEEE Signal Processing Magazine, Vol. 24, No. 4, pp.
118–120, July 2007.

[4] R. Pichevar, H. Najaf-Zadeh, L. Thibault, “A
Biologically-Inspired Low-bit-rate Universal Audio
Coder”, in Proceedings of the AES, Vienna, May 2007.

[5] J.P. Princen and A.B. Bradley, “Analysis/synthesis filter
bank design based on time domain aliasing cancellation,”
in IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. 34, No. 5, pp. 1153–1161, 1986.

[6] E. Balas, “An additive algorithm for solving Linear Pro-
grams with zero-one variables,” in Operatons Research,
Vol. 13, No. 4, pp. 517–546, 1965.

[7] H. Najaf-Zadeh and P. Kabal, “Improving Perceptual
Coding of Narrowband Audio Signals at Low Rates”, in
Proc. ICASSP 1999, Phoenix, Arizona, March 1999, pp.
913–916.

253

