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ABSTRACT
Parahermitian matrices arise in broadband multiple-inputmultiple-
output (MIMO) systems or array processing, and require inversion
in some instances. In this paper, we apply a polynomial eigenvalue
decomposition obtained by the sequential best rotation algorithm
to decompose a parahermitian matrix into a product of two parau-
nitary, i.e. lossless and easily invertible matrices, and adiagonal
polynomial matrix. The inversion of the overall parahermitian ma-
trix therefore reduces to the inversion of auto-correlation sequences
in this diagonal matrix. We investigate a number of different ap-
proaches to obtain this inversion, and and assessment of thenumer-
ical stability and complexity of the inversion process.

1. INTRODUCTION

When characterising a vector processx[n] ∈ CM , which may repre-
sent spatio-temporal data acquired fromM sensors withn being the
discrete time index, a space-time covariance matrix of the form

R[τ] = E

{

x[n] ·xH[n− τ]
}

(1)

can be defined. Its Fourier pairR(z) •—◦R[τ],

R(z) =
∞

∑
τ=−∞

R[τ]z−τ (2)

is a power spectral matrix, which takes the form of a matrix polyno-
mial in z [1]. This power spectral matrix is parahermitian, fulfilling
R(z) = R̃(z) ∈ CM×M(z) with the parahermitian operator̃{·} that
implies complex conjugate transposition and reversal of the polyno-
mials, i.e.R̃(z) = RH(z−1). An example of a 3×3 parahermitian
matrix of order 4 is given in Fig. 1.

The inversion of such a parahermitian matrix is required e.g. for
the generalised Wiener filter sought in [2] and [3]. The approach
in [2] is not further elaborated and the solution approximated by a
scalar matrix, while [3] is a very coarse attempt at what thispaper
addresses below.

The inversion of parahermitian matrices also arises as partof
the pseudo-inverse of an arbitrary rectangular polynomialmatrix
C(z) ∈ CM×N(z), which can represents the transfer function of a
broadband MIMO system. Here, the transfer path between each
pair of transmit and receive antennas requires to be modelled by
an FIR filter, instead of the simpler complex gain factor thatcan
be used in the narrowband case. To compute a zeo-forcing linear
precoder or equaliser, the pseudo-inverse ofC(z) is given by

C†(z) =

{ (
C̃(z)C(z)

)−1
C̃(z) M ≥ N

C̃(z)
(
C(z)C̃(z)

)−1
M ≤ N

(3)

where the products̃C(z)C(z) and C(z)C̃(z) are parahermitian.
Such MIMO systems can be found in multichannel deconvolution
problems in audio and acoustics [4, 5, 6, 7] as well as in communi-
cations [2, 3].

This paper is organised as follows. Sec. 2 will review existing
time- and frequency-domain methods for the inversion of polyno-
mial matrices. The proposed approach will be outlined in Sec. 3

and require the inversion a auto-correlation sequences, which will
be addressed in Sec. 4. Finally, simulation results will be presented
in Sec. 5 and conclusions be drawn in Sec. 6.

2. STATE OF THE ART

To the best of our knowledge, polynomial space-time covariance
matrices have not been inverted previously. However, inversion ap-
proaches exist for dispersive MIMO systems in audio and acoustics,
as well as communications. In the following, a number of the ap-
proaches mentioned in Sec. 1 will be outlined.

2.1 Time-Domain / MMSE Inversion

An early reference to the inversion of MIMO systems can be found
in [4], where a linear system with convolutional matrices issetup
that allows to solved for the inverse system using standard linear
algebraic techniques. However, this requires to select theorder of
the inverse system a priori, on which the accuracy of the solution
will depend.

2.2 Frequency Domain Inversion

For a similar problem in acoustics, [5] uses a DFT approach tore-
duce the broadband problem into narrowband problems that can be
independently solved using standart matrix inversion techniques in
each frequency bin. Evaluating on a finite grid of frequency points
Ωi, the inversion of a MIMO system matrixC(z) is based on the
DFT representationC(z)|z=e jΩi = C(e jΩi), such that

C̃−1(e jΩi) = C†(e jΩi)A(e jΩi) (4)

whereby the matrixA(e jΩ) is a reference control system, which can
e.g. be utilised to permit a delay for the overall system. Theresults
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Figure 1: Example of a 3×3 parahermitian matrixR(z).
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Figure 2: Power spectraΛi(e jΩ) for the matrixR(z) in Fig. 1, ex-
hibiting spectral majorisation.

is transformed back into the time domain by means of an Inverse
DFT, but if the number of frequency bins is selected too low, and
the inverse is longer than anticipated, wrap-around due to the DFT
implementing a cyclic convolution will occur.

Similar to the solution in [5], OFDM approaches to broadband
MIMO inversion will be based on a solution in the DFT domain.
In the following, an approach based on polynomial matrices will be
proposed and evaluated.

3. POLYNOMIAL EVD-BASED INVERSION

The inversion technique for parahermitian matrices proposed in
this paper is based on the polynomial eigenvalue decomposition
(PEVD) by McWhirter et al. [8]. First, the PEVD is characterised,
before the inversion methods and a practical algorithm to implement
a PEVD are presented.

3.1 Polynomial EVD

A polynomial eigenvalue decomposition of a parahermitian matrix
R(z) ∈ CM×M(z) is defined as

R(z) = Q(z)Λ(z)Q̃(z) (5)

wherebyQ(z) ∈ CM×M(z) is paraunitary, i.e.

Q(z)Q̃(z) = Q̃(z)Q(z) = I (6)

and Λ(z) ∈ C
M×M(z) is parahermitian and diagonal with diago-

nal elementsΛi(z) ordered such that the power spectral densities
Λi(e jΩ) fulfill

Λi(e
jΩ) ≥ Λi+1(e

jΩ), ∀Ω, i = 0. . .(M−2) . (7)

The property (7) is called spectral majorisation. While a practical
decomposition algorithm developed in [8] will be discussedlater,
an example for the spectrally majorisedΛ(z) arising from the de-
composition of the matrix in Fig. 1 is given in Fig. 2.

3.2 Polynomial Inverse

Based on the PEVD, the inverse can be formulated as

R−1(z) = Q(z)Λ−1(z)Q̃(z) . (8)

It is straightforward to show that

R−1(z)R(z) = R(z)R−1(z) = I . (9)

The paraunitarity ofQ(z) plays a vital role in the simplicity of this
inverse. It remains to invert the diagonal polynomial matrix Λ(z),
which can be achieved by inverting all elements along on the main
diagonal,

Λ−1(z) =








Λ̃0(z)
Λ̃1(z)

. . .
Λ̃M−1(z)








, (10)

wherebyΛi(z)Λ̃i(z) = 1. Next, a practical decomposition to de-
termineQ(z) will be reviewed, before methods to invert the on-
diagonal elementsΛi(z) are discussed in Sec. 4.

3.3 Sequential Best Rotation Algorithm

SBR2 is an iterative broadband eigenvalue decomposition technique
based on second order statistics only and can be seen as a generali-
sation of the Jacobi algorithm. The decomposition afterL iterations
is based on a paraunitary matrixUL(z),

UL(z) =
L

∏
i=0

QiΓi(z) (11)

wherebyQi is a Jacobi rotation and the matrixΓi(z) a paraunitary
matrix of the form

Γi(z) = I−viv
H
i + z−∆iviv

H
i (12)

with vi = [0 · · ·0 1 0 · · · 0]H containing zeros except for a unit ele-
ment in theδith position. ThusΓi(z) is an identity matrix with the
δith diagonal element replaced by a delayz−∆i .

At the ith step, SBR2 will eliminate the largest off-diagonal
element of the matrixUi−1(z)Rww(z)Ũi−1(z), which is defined by
the two corresponding sub-channels and by a specific lag index.
By delaying the two contributing sub-channels appropriately with
respect to each other by selecting the positionδi and the delay∆i,
the lag value is compensated. Thereafter a Jacobi rotationQi can
eliminate the targetted element such that the resulting twoterms on
the main diagonal are ordered in size, leading to a diagonalisation
and at the same time accomplishing a spectral majorisation.

SBR2 only achieves an approximate diagonalisation after a
finite number of iteration steps when off-diagonal elementsare
smaller than a thresholdϑ ,

R(z) = Q(z)(Λ(z)+E(z))Q̃(z) (13)

with Λ(z) diagonal andE(z) a non-sparse error matrix with
‖E(z)‖∞ ≤ ϑ . Here, the infinity norm‖R(z)‖∞ is defined as re-
turning the largest element across all matrix-valued coefficients of
the polynomialR(z),

‖R(z)‖∞ = max
ν

‖Rν‖∞ . (14)

An alternative stopping criterion is to define a maximum number of
iterations for SBR2 [11, 13].

3.4 Error Gain

SBR2 will reach a decomposition where the matrixQ(z) is per-
fectly paraunitary by definition. However, SBR2 only achieves an
approximate diagonalisation, and as a result the inversionprocess
has an inherent error as off-diagonal terms will be ignored when
computing (10) later.

The decomposition with SBR2 can be characterised as follows

R(z) = Q(z)Λ(z)Q̃(z)+Q(z)E(z)Q̃(z) (15)

= Q(z)Λ(z)Q̃(z)−E1(z) (16)
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whereΛ(z) is perfectly diagonal and the term−E1(z) describes any
remaining off-diagonal elements due to the finite number of itera-
tions of SBR2. Ingnoring off-diagonal elements in the inversion
process leads to

Q(z)Λ−1(z)Q̃(z) = (R(z)+E1(z))
−1 = R−1(z)+E2(z) (17)

An important measure therefore is the amplification of elements in
−E1(z) due to the inversion process, resulting inE2(z). An inter-
esting performance measure of inversion is therefore the error gain

γ =
‖E2(z)‖F

‖E1(z)‖F
, (18)

where the Frobenius norm of a polynomial matrixR(z) =
∞
∑

ν=−∞
Rν z−ν is defined as

‖R(z)‖F =

(
∞

∑
ν=−∞

‖Rν‖
2
F

) 1
2

. (19)

Next, we will concentrate on the inversion of the on-diagonal
elements ofΛ(z).

4. INVERSION OF AUTOCORRELATION SEQUENCES

This section addresses the inversion of on-diagonal elements of
Λ(z). These elements have the properties of auto-correlation se-
quences, i.e.

rii[τ] = r∗ii[−τ] ◦—• Rii(z) = R∗
ii(z

−1) .

This symmetry can be exploited in the inversion process, since the
inverse of a linear phase single-input single-output (SISO) system
must also be a linear phase system and therefore have the samesym-
metry properties [10, 9, 12]. FromRii(z)R

−1
ii (z) = 1 we deduce

rii[τ] ∗ sii[τ] = δ [τ] wheresii[τ] ◦—• Sii(z) = R−1
ii (z) is the inverse

of the auto-correlation sequence. We here useS(z) to describe the
inverse ofR(z) due to potential truncation errors in the methods
described below.

4.1 Spectral Factorisation

Due to its minimum phase property, each auto-correlation function
can be factored into

Λi(z) = Λi,min(z)Λi,max(z) (20)

with Λi,min(z) minimum andΛi,max(z) maximum phase. In the
inversion process, we exclude spectral zeros from theΛi(z), as
this would lead to a non-invertible sequence. Do to symmetry,
Λi,max(z) = Λ∗

i,min(z
−1).

We calculateΛ−1
i,min(z) and have

Λ−1
i (z) = Λ−1

i,min(z)Λ
−1,∗
i,min(z

−1) (21)

First order sections ofΛi,min(z) are inverted using geometric series
expansions of appropriate lengths in the time domain. Thereafter,
convolution yieldsλi,min[τ], and the estimate of the inverse is com-
puted according to

si[τ] = λi,min[τ]∗λ ∗
i,min[−τ]

and truncated to the range−T ≤ τ ≤ T .

4.2 Time Domain / MMSE Inversion

The time domain inversion is based on a convolutional matrixde-
sciption of the convolution of an auto-correlation sequence r[n] and
its inverses[n],















r[N]
...

. . .
r[−N] r[N]

. . .
. . .

r[−N] r[N]
. . .

...
r[−N]


























s[−T ]
...

s[0]
...

s[T ]











=














0
...
0
1
0
...
0














or
As = d

with A ∈C(2T+2N+1)×(2T+1), s ∈C(2T+1) andd∈ Z(2T+2N+1). A
solution can be obtained via the left pseudo-inverse,

s = (AHA)−1AHd (22)

This solution should have the same symmetry properties asr[n], and
any deviation from symmetry must be due to numerical problems in
the inversion process. The symmetry error

ε = ‖s−Js∗‖2
2 (23)

should be as small as possible.
A minimum mean square error solution to (22) can be obtained

by including the noise-to-signal ratio for regularisationpurposes.

4.3 Inversion with Explicit Symmetry Constraint

An ill-conditionedA can lead to an asymmetric solution in (22).
Hence it is advantageous to enforce symmetry in the setup.

This can be performed by a Lagrangian approach, which solves
the constrained optimisation problem

find min
s

‖As−d‖2
2 (24)

subject to s = Js∗ . (25)

Instead of solving this Lagrangian problem, the next section dis-
cusses a direct approach of embedding the constraint into the for-
mulation.

4.4 Inversion with Implicit Symmetry Constraint

The symmetry condition can be incorporated into the system equa-
tion by formulating

[

ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]

·

[

ℜ(s)
ℑ(s)

]

=

[

d
0

]

.

In this, the inverse is implicitly constrained by only defining half
the response as

w =








s[−T ]
...

s[1]
1
2s[0]








with

ℜ(s) =





IT 0
0T 2
JT 0



ℜ(w) = M1ℜ(w) (26)

ℑ(s) =





IT 0
0T 0

−JT 0



ℑ(w) = M2ℑ(w) , (27)
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Figure 3: Example of inverting an ACS of length 11 by a response
with length 2T +1 = 101.

to reconstruct the real and imaginary part of the true solution.
Therefore the problem formulation becomes

[

M1ℜ(A) −M2ℑ(A)
M2ℑ(A) M2ℜ(A)

]

︸ ︷︷ ︸

Ac

·

[

ℜ(w)
ℑ(w)

]

=

[

d
0

]

︸ ︷︷ ︸

dc

and the solution is reached via the pseudo-inverse

s = [M1 jM2]
(

AT
c Ac

)−1
AT

c dc .

5. RESULTS

5.1 Comparison of ACS Inversion Approaches

The two approaches of constrained time domain inversion andspec-
tral factorisation are compared in a number of simulations,with
Figs. 3 and 4 showing the inversion of an autocorrelation sequence
for two different lengths of the inverse. Additionally, Fig. 5 ad-
dresses the inversion error — measured Euclidean distance of the
convolved autor-correlation sequence and its inverse froma Dirac
impulse —, and Fig. 6 the computational complexity of the pro-
posed schemes.

For the same length, spectral factorisation is worse in terms
of inversion error but lower in terms of complexity. The MMSE
approaches both achieve the same accuracy for inversion, but the
implicitly constrained method offers a lower complexity due to real
valued arithmetic even for complex valued problems, and theresult-
ing response is perfectly symmetric. Unconstrained optimisation re-
quires complex valued arithmetic, and while the error in symmetry
is not significant, it grows with the order of the inverse, as evident
from Fig. 7.

5.2 Parahermitian Matrix Inversion

As an example, the inversion of the auto-correlation sequences for
the matrix in Fig. 2 is shown in Fig. 8 with the convolution of the
original parahermitian matrix and its inverse shown in Fig.9.

6. CONCLUSIONS

This paper has presented an inversion approach for parahermitian
polynomial matrices. A number of issues, such as the error gain
applied to approximation errors and the possibility of regularisation
that may be linked to the size of off-diagonal terms, still need to be
investigated, and will be included in the full paper. Initial results
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Figure 4: Example of inverting an ACS of length 11 by a response
with length 2T +1 = 501.

indicate that the proposed approach can work well with reasonable
complexity, and presents an attractive approach to existing inversion
methods for arbitrary broadband MIMO systems.
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