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Abstract—In this paper we show that Rader and Bren-
ner’s ‘real-factor’ FFT can be streamlined so that it re-
quires lower computational complexity as compared to the
Cooley- Tukey radix-2 FFT. We then show that the fixed
point implementation of ‘real-factor’ FFT can be modified
so that its noise-to-signal ratio (NSR) is lower than the NSR
of Cooley-Tukey radix-2 FFT. Finally simulation results
are presented which verify the suitability of ‘real-factor’
FFTs.

Index Terms—DFT, FFT, real-factor FFT

I. INTRODUCTION

Discrete fourier transform (DFT) is among the most
fundamental operations in digital signal processing.
However, the wide use of DFT makes its computational
requirements an important issue. Direct computation of
DFT requires on the order of N2 operations where N
is the transform size. The breakthrough of the Cooley-
Tukey FFT [1] comes from the fact that it brings the
complexity down to an order of N log2N operations.

Among the numerous further developments that fol-
lowed Cooley and Tukey’s original contribution are the
Winograd fourier transform algorithm (WFTA) [2] and
the ‘real-factor’ algorithms [3], [4] for reduction in the
order of the multiplicative complexity. However both
WFTA and ‘real-factor’ FFTs did not meet expectations
once implemented as the number of additions (and data
transfers) also matter in the implementation. In addition
Rader and Brenner’s ‘real-factor’ FFT is ill-conditioned
i.e., “small computational errors lead to large output
errors” [3] due to the large values that the twiddle factors
can take. Note that the ‘real-factor’ FFT of Cho and
Temes [4] is numerically well conditioned.

In this paper we present solutions for both the prob-
lems of Rader and Brenner’s ‘real-factor’ FFT. We first
show that the arithmetic complexity (multiplications and
additions, also known as the flop count) of the Rader
and Brenner ‘real-factor’ FFT can be reduced to about

41
2N log2(N) which is less than the arithmetic complex-

ity of radix-2 Cooley-Tukey FFT. We then show that
fixed-point implementation of Rader and Brenner ‘real-
factor’ FFT has lower NSR then radix-2 Cooley-Tukey
FFT and as a result is more suitable as it requires only
half the number of real multiplications. Additionally, the
modified ’real factor’ FFT is not ill-conditioned as the
magnitude of all the twiddle factors is less than 1.

The essence of Radar and Brenner’s DIT FFT is as
follows: Let {Ak} denotes N -point DFT of the sequence
an of N = 2M i.e. {Ak} = DFTN{an}. Then radix-2
DIT FFT is given by

Ak = Bk +W k
NDk, k = 0, · · · , (N − 1) (1)

where W k
N = exp(−j2π/N) and the N/2-point se-

quences are defined as {bn} = {a2n}N/2−1
n=0 ,{dn} =

{a2n+1}N/2−1
n=0 , {Bk} = DFTN/2{bn} and {Dk} =

DFTN/2{dn}. Note that for a N/2-point sequence, if
the index k, n is greater than N/2 − 1 we assume k, n
mod N

2 . Since in general DK and W k
N are both complex

in nature, the basic butterfly operation indicated in (1)
requires ’4’ real multiplications and ’4’ real additions.
Rader and Brenner introduced the following sequence
[3]

cn = dn − dn−1 + qn, n = 0, · · · , N
2
− 1 (2)

where qn = 2/N
∑N

2
−1

m=0 dm It follows that (1) can be
rewritten as

A0 = B0 + C0, AN/2 = B0 − C0,

Ak = Bk −
j

2
csc

(
2πk
N

)
Ck, k 6= 0, N/2− 1 (3)

where Ck = DFTN/2{cn} and where csc(x) is the
cosecant of x. If we change the sign to plus in the
definition of cn, then the coefficient of Ck in (3) is
1
2sec(

2πk
N ) where sec(x) is the secant of x . In either
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case, equation (3) requires 2 real multiplications and
2 real additions. But this is at the expense of more
additions to find qn and cn from dn. Therefore total real
additions per stage will be 2N + N + 2N = 5N . The
real multiplications are given by N and the total flop
count is given by ∼ 6N log2N . The rest of the paper
is organized as follows: In section II we first present
DIF version of new FFT that requires ∼ 5N log2N
flops in subsection II-A. In subsection II-B we derive
the corresponding DIT FFT and in subsection II-C we
show that the flop count can be further reduced to
∼ 41

2N log2N . Notably this is the best known flop count
that can be achieved by a radix-2 FFT. We then present a
fixed-point implementation of Rader and Brenner’s FFT
based on the radix-2 FFTs developed in this paper which
has a lower NSR than the radix-2 Cooley-Tukey FFT in
Section III and conclusions are given in Section IV.

II. NEW FFT
In this section, we first derive a DIF FFT that requires

∼ 5N log2N flops. The corresponding DIT version is
also derived and the algorithm is further modified so
that the flop count is further reduced to ∼ 41

2N log2N .

A. Derivation of DIF version of New FFT
According to the principle of DIF-FFT, the even and

odd DFT coefficients are given by

A2k = DFTN
2
{an + an+N/2}, k = 0, · · · , N

2
− 1 (4)

A2k+1 = DFTN
2
{(an − an+N/2)Wn

N}, k = 0, · · · , N
2
− 1.(5)

To eliminate the complex multiplication factor from (5),
we define the sequence {cn} as

cn[1−W 2n
N +δ(n)] = {an−an+N/2}Wn

N , n = 0, · · · , N
2
−1.
(6)

Equation (6) can be simplified as

c0 = {a0 − aN/2} (7)

cn =
j

2
csc
(

2πn
N

)
{an+N/2 − an}, n = 1, · · · , N

2
− 1. (8)

Applying DFT on both sides of (6) we get

Ck − Ck+1 + c0 = A2k+1, k = 0, · · · , N
2
− 1. (9)

where
Ck = DFTN/2{cn}

and
DFTN/2{cnδ(n)} = c0.

Denote P (n,N) , − j
2 csc(2πn

N ), then the DIF computa-
tion for the new algorithm is schematically represented
for N = 16 in Figure.1.
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Fig. 1. The decomposition of the N -point DFT into two N/2-point
DFTs for new DIF radix-2 FFT algorithm for N = 16

1) Computation complexity for Real Multiplications:
The number of multiplications can be calculated from
(8). For each value of ’n’, ’2’ real multiplications are
needed and the total number of real multiplications
given two N/2 points DFTs is N − 2. Therefore the
total number of real multiplications for a N -point DFT,
M(N) is given by

M(N) = N − 2 + 2M
(
N

2

)
. (10)

Solving by repeated substitutions we have,

M(N) = N log2(N)− 3N + 2. (11)

2) Computation complexity for Real Additions: The
number of real additions, given two N/2 point DFTs, is
are calculated as follows:
• 2(N/2) real additions for evaluating (4) for n =

0, · · · , N2 − 1,
• 2(N/2+1) real additions for evaluating (6) for n =

0, · · · , N2 − 1,
• 4(N/2) real additions for evaluating (9) for n =

0, · · · , N2 − 1.
Let A(N) denote the total number of real additions for
computing a N point DFT. It follows that

A(N) = 4N + 2 + 2A
(
N

2

)
. (12)

Solving by repeated substitutions we have,

A(N) = 4N log2(N)− 2N − 2. (13)

The total flop count is then given by T (N) =
5N log2(N) − 5N . Importantly, the DIF version of the
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FFT presented in Subsection II-A require the same
number of computations (real adds + real multiplies) as
normal radix-2 DIT or DIF FFT while requiring lesser
number of multiplies. Also as compared to DIT version
of Rader and Brenner’s FFT the DIF version requires N
fewer real additions.

B. DIT version of New FFT

In this subsection we derive dual DIT version of the
DIF FFT presented in subsection II-A. The dual DIT
FFT for the DIF FFT of Section II is given by:

cn = dn − dn−1, n = 0, · · · , N
2
− 1. (14)

It follows that (3) is still valid with the exception that
C0, is defined as

C0 =

N

2
−1∑

n=0

cn (15)

The arithmetic complexity of this DIT FFT is again
T (N) = 5N log2(N) − 5N . Note that the difference
between Rader and Brenner’s FFT and our FFT is in
the computation of C0. In Rader and Brenner’s FFT
1
NC0 = q is added to all ci which requires 2N − 2 real
additions while in our version C0 is directly computed
as in (15) which requires N − 2 real additions.

C. Modified DIF version of New FFT

In this subsection we show that the computational
complexity can be reduced further. If we add c0 to (8)
for n = N

4 then

cN
4

= − j
2
csc(

π

2
){aN

4
− a3N/4}+ c0, (16)

and rest of the sequence {cn}, n = 0, · · · , N/4 −
1, N/4+1, · · · , N/2−1 is given by (7)-(8). Equation(9),
for this case, modifies to

A2k+1 =
{
Ck − Ck+1 + 2c0 k is even
Ck − Ck+1 otherwise

(17)

The DIF computation for the new algorithm is schemat-
ically represented for N = 16 in Figure 2. With this
substitution it is obvious that the number of real multi-
plications are same. However, N2 −2 fewer real additions
are required compared to the previous subsections i.e.
II-A, II-B. Accordingly, the number of real additions are
given by

A(N) =
7
2
N + 4 + 2A

(
N

2

)
. (18)
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Fig. 2. The decomposition of the N -point DFT into two N/2-point
DFTs for new DIF radix-2 FFT for N = 16.

Solving by repeated substitution we have,

A(N) =
7
2
N log2(N)− 1

2
N − 4. (19)

The total flop count is then given by T (N) =
41

2N log2(N) − 7
2N − 2. Importantly, the flop count of

this radix-2 FFT is less than other radix-2 FFTs including
standard DIT, DIF radix-2 FFTs. Note that the DIT
version for this modification can be similarly obtained
as in subsection II-A.

III. FIXED-POINT ANALYSIS OF NEW FFT

In this section we consider the fixed-point imple-
mentation of ‘real factor’ FFTs presented in section
II. An important parameter in the analysis of fixed-
point implementation is the noise-to-signal ratio (NSR)
[16], [17]. Note that the NSR of Cooley-Tukey FFT
is 4N2−2b, where b is the bit precision[16], [17]. The
NSR of Rader and Brenner’s algorithm is known to
be very poor because of the large values of csc

(
2πn
N

)
[3]. Accordingly we first modifiy the real-factor FFT for
fixed-point implementation in Subsection III-A and then
derive their NSR in Subsection III-B. Verification of the
desired NSR is then presented in Subsection III-C

A. A Real-factor FFT for fixed point implementation
To start with we modify (7) as

ĉ0 =
c0
2l

=
{a0 − aN/2}

2l
(20)

ĉn =
cn
2l

=

[
j csc

(
2πn
N

)
2l+1

]{
(an+N/2 − an)

}
,

n = 1, · · · , N
2
− 1. (21)
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where l is chosen such that csc
(

2π
N

)
≤ 2l+1. It follows

that
csc( 2πn

N )
2l+1 ≤ 1,∀n. This modification ensures that the

real multiplication factors are less than 1. The resulting
algorithm is not ill-conditioned as the magnitude of all
the twiddle factors is less than 1. Applying DFT on both
sides of (6) (with this modification) we get{

Ĉk − Ĉk+1 + ĉ0

}
2l = A2k+1, k = 0, · · · , N

2
− 1.

(22)
where

Ĉk = DFTN/2{ĉn}
and

DFTN/2{cnδ(n)} = c0.

The purely imaginary twidle factor is now given by
P (n,N) , − j

2l+1 csc(2πn
N ). A similar algorithm with

purely real twidle factors can be similarly developed.
Note that in both the cases 0 ≤ P (n,N) ≤ 1. The
advantage of the presented fixed-point algorithm can be
observed from (22) where in the effect of large values of
csc(θ) has been captured in l and the effective precision
at the output is l + b bits. In the next section we show
by deriving the NSR that this algorithm has effectively
converted the disadvantage of large twidle factors into
an advantage.

B. NSR of modified real-factor FFT

Following the procedure of calculating the NSR of
Cooley-Tukey [16], [17], the main source of noise in a
DFT or FFT calculation is the quantization noise which
is mainly required due to finite register lengths and is
associated with each real multiplication in the DFT/FFT
computation. Note that better and more accurate noise
models have been considered in literature [5]-[15], how-
ever the essence of these models is that other factors are
negligible.

Following [16], [17], the input signal is assumed to be
such that successive sequence values are uncorrelated i.e.
its a white signal with uniform amplitude distribution of
real and imaginary parts in the interval ( 1√

2
,− 1√

2
). For

convenience, it is further assumed that an is of infinite
precision, thus yielding the average signal power of an
as

E{an} =
1
3
. (23)

In fixed point arithmetic overflow has to be prevented
by scaling. If an overall scaling factor of 1/s is used,
then using Parseval’s theorem and the DFT equation, the
output signal power is given by [16], [17]

E{|Ask|2} =
N

3s2
. (24)

Now to avoid overflow in (20) and (21), the input an is
scaled by 1/2 at each stage. As the number of stages
is v = log2N , the total scaling is 1/N and the output
signal power is given by

E{|Ask|2} =
1

3N
. (25)

Note that there is no need of scaling in (22) as will be
discussed later. Similarly, the output noise power can be
estimated as follows; major part of the overall noise in
FFT computation will arise due to finite world length
effects which requires rounding off the results obtained
after multiplications. Now one butterfly of ‘real-factor’
FFT algorithm requires one complex-real multiplication
which in turn contains two real multiplications. More-
over, each real multiplication contributes a roundoff error
ε(n, k). To compute the variance of error in A′k, where
A′k = Ak + ε(n, k) we assume that:

1) The errors are uniformly distributed random vari-
ables over the range (−1/2)2−bto(1/2)2−b. There-
fore, each error source has variance σ2

b = 2−2b

12 .
2) The errors are uncorrelated with each other.
3) All the errors are uncorrelated with input and

consequently also with the output.
Overall noise variance at each (real-factor) butterfly can
then be written as,

σ2
B = 2σ2

b =
2−2b

6
. (26)

A more generalized model is given in [13] as σ2
b = β 2−2b

12
where 3 ≤ β ≤ 4. However, for simplicity, we assume
the model of (26). Now the mean-square magnitude
of the noise at each output node is the sum of the
contributions of each noise source (one per required
butterfly) while computing the output of that node. As
the scaling is assumed to be stage by stage, the noise
introduced at previous stages will be also be scaled along
with signal. Thus, noise sources introduced at different
stages in FFT will contribute different amount of noise
at the output.In a N -point FFT with v = log2(N) stages,
noise source originating at mth array will propagate to
the output with multiplication by

(
1
2

)v−m−1. Also, each
output node connects to 2v−m−1 butterflies and therefore
to 2v−m noise sources that originates at mth array. Thus
at each output node, the mean-square magnitude of the
noise is,

E{|Ank|2} = σ2
B

v−1∑
m=0

2v−m
(

1
2

)2(v−m−1)

= 4σ2
B

(
1− 1

2v

)
(27)
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Fig. 3. SQNR for Cooley-Tukey (CT) FFT and the modified ‘real-
factor’ (New) FFT for N = 64 and different wordlengths.

For large N , E{|Ank|2} ' 4σ2
B = 2

32−2b. The output
noise to signal ratio for the case of step-by-step scaling
(corresponding to k = N ) and white input can be
obtained as

E{|Ank|2}
E{|Ak|2}

= 2N2−2b. (28)

Note that no additional scaling is required for computing
(22). This can be seen from the fact that there is no
overflow in Ĉk, ∀k because of the stage by stage FFT
scaling. Also we know from the DFT equation that a
scaling of 1/N is sufficient for overflow in computation
of Ak [16], [17] which is obtained again because of
the stage by stage scaling. So it follows that as Ak is
computed in (22) there is no need of additional scaling.
It follows that real factor FFT’s have lower NSR as
compared to radix-2 Cooley-Tukey FFT.

C. Simulation results for Signal to Quantization Noise
Ratio (SQNR)

Figure 3 gives the SQNR simulation results for 64
point DFT for the Cooley Tukey (market as ‘CT’) FFT
algorithm and the ‘real-factor’ FFT (marked as ‘New’)
presented in this paper when the twiddle factor and input
word lengths vary from 8 to 32 bits. Observe that as
predicted by theoretical results the modified real-factor
FFT enjoys a 3 dB gain in terms of SQNR (Note that
SQNR is inverse of NSR).

IV. CONCLUSION

In this paper we have shown that the arithmetic
complexity of real-factor FFT’s is significantly less
than that of radix-2 Cooley Tukey FFT. We have also

shown that this FFT has a significant advantage as
compared to Cooley-Tukey FFT when it comes to fixed
point implementation as it has lower number of noise
sources (real multiplications) and hence lower NSR. This
algorithm is of practical importance as radix-2 FFTs
are generally preferred in ASIC implementation and
for software defined radio applications due to ease of
reconfigurability. Overall these factors are in favor of real
factor FFT’s. However, the disadvantage is additional
memory for storage of C0 for each stage (additional
memory access) but as the cost of memory decreases
this might not be significant.
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