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ABSTRACT

This paper considers the design of optimal joint compression-
routing schemes for networks with correlated sources and multiple
sinks. Such a setting is typically encountered in sensor networks. It
is sometimes tempting to assume that an optimal distributed com-
pression scheme followed by standard routing (as designed for in-
dependent sources) would be nearly optimal. We instead propose
a joint design approach that integrates distributed source coding
with a mechanism called dispersive information routing. Unlike
network coding, dispersive information routing can be realized us-
ing conventional routers without recourse to recoding at interme-
diate nodes. We also point out the direct connections between dis-
persive information routing and a related problem in sensor network
databases, namely, fusion coding for selective retrieval. We propose
an efficient practical design strategy, variants of which are adopted
for each of the two problems. Simulation results provide evidence
for substantial gains over conventional schemes.

Index terms - Compression, distributed source coding, routing,
sensor networks, database retrieval

1. INTRODUCTION

The field of distributed source coding (DSC) began in the seventies
with the seminal work of Slepian and Wolf [13]. They showed,
in the context of lossless coding, that side-information available
only at the decoder can nevertheless be fully exploited as if it
were available to the encoder, in the sense that there is no asymp-
totic performance loss. Later, Wyner and Ziv [14] derived a lossy
coding extension. A number of theoretical publications followed,
primarily aimed at solving the general multi-terminal source cod-
ing problem. It was not until the late nineties, when practical
DSC schemes adopting principles from channel coding were being
designed, where notably influential was the “DISCUS” approach
[6]. An alternative approach to DSC sprung directly from prin-
ciples of source coding. Algorithms for distributed vector quan-
tizer design have been proposed in [3, 11]. Algorithms to optimize
the fundamental tradeoffs in the (practically unavoidable) case of
sources with memory have recently appeared in [12]. Similar de-
sign approaches have shown to be efficient to handle the exponen-
tial growth in codebook size in the context of distributed coding for
large number of sources [10]. The source coding approaches will
be most relevant to us here and will be discussed briefly in Section
3.2.

Compression in multi-hop networks has gained significant im-
portance in recent years, mainly due to its relevance in sensor net-
work applications. Review paper [4] describes the various joint
compression-routing schemes that have been developed so far. En-
coding correlated sources in a network with multiple sources and
sinks has conventionally been looked at from two different direc-
tions. The first approach performs compression at intermediate
nodes [4], where all the information is available, without appeal-
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ing to DSC principles. However, such approaches tend to be waste-
ful at all but the last hops of the communication path. The sec-
ond approach uses distributed source coding to exploit correlation at
the source nodes followed by simple routing at intermediate nodes.
Well designed DSC could provide considerable performance im-
provement and/or complexity/energy savings. Various aspects of
DSC for routing have been considered in a number of publications,
and notably in [2], where the authors consider joint optimization of
Slepian - Wolf coding and conventional routing.

Optimal routing schemes, designed for independent sources
(conventional routing), have been studied extensively [1], primar-
ily due to the growth of the Internet. It may be tempting to assume
that an optimal distributed source code, which tries to eliminate the
dependencies between sources, followed by a conventional routing
mechanism would achieve optimality for correlated sources. In this
paper, we introduce the concept of “dispersive information rout-
ing” (DIR) coupled with joint (compression-routing) optimization
approach, which offer substantial performance gains for correlated
sources. We first show using a simple network example the sub-
optimality of conventional methods and motivate the approach. To
demonstrate its potential we then derive a gradient based method for
joint DSC - DIR design and apply it to a sensor grid with multiple
sources and sinks. Unlike network coding [7], DIR can be realized
using conventional routers without recourse to expensive coders at
intermediate nodes.

A different problem that is highly relevant to correlated sources,
and that perhaps surprisingly reveals underlying conceptual simi-
larity, is that of storage and retrieval of correlated sources from a
database at a fusion center - called fusion coding. This problem has
been studied recently both from the information theoretic [5] and
the design perspectives [8]. In this paper, we review the motiva-
tions, ideas and the methodologies involved. Our primary outlook
is to point out the close connection between fusion coding and dis-
persive information routing and thereby illustrate the general appli-
cability of the approaches herein.

2. NOTATIONS AND PROBLEM SETUP

Let a network be represented by an undirected graphG = (V,E).
Each edgee ∈ E is a network link whose communication cost de-
pends on the edge weightwe. The nodesV consist ofN source
nodes,M sinks, and|V |−N −M intermediate nodes1. Source node
i has access to source random variableXi. The joint probability
distribution of(X1 . . .XN) is known at all the nodes. The sinks are
denotedS1,S2 . . . ,SM . Each sink requests the information of a sub-
set of sources. Let the subset of nodes requested by sinkS j be
V j ⊆V . Conversely, sourcei has to be reconstructed at a subset of
sinks denotedSi ⊆ {S1,S2 . . . ,SM}.

Define traffic matrix (or “request” matrix)T , for network graph
G as theN ×M binary matrix that specifies which sources must be

1For any setB, we use|B| to denote the set cardinality.
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Figure 1: Example to motivate DIR:S1 requests forX1 andX2 while
S2 requests forX2 andX3.

reproduced at which sinks:

Ti j =

{

1 if i ∈V j

0 else,

i.e., V j = {i : Ti j = 1} and Si = {S j : Ti j = 1}. Without loss of
generality we assume that every source is requested by at least 1
sink.

The cost of communication through a link is a function of the bit
rate flowing through it and the edge weight, which we will assume
for simplicity to be a simple productf (r,we) = rwe, noting that the
approach is directly extendible to more complex cost functions. The
objective is to design encoders, routers and decoders to minimize
the overall network cost (calculated given the set of link rates and
edge weights) at a prescribed level of average distortion.

We denote byE i
B, the set of all paths from sourcei to the sub-

set of sinksB ⊆ {S1 . . .SM}. The optimum route from the source
to these sinks is determined by a spanning tree optimization (min-
imum Steiner tree) [1]. More specifically, for each source nodei,
the optimum route is obtained by minimizing the cost over all trees
rooted at nodei which span all sinksS j ∈ B. The minimum cost
of transmitting a single bit from sourcei to the subset of sinksB,
denoted byd∗

i (B), is given by:

d∗
i (B) = min

P∈E i
B

∑
e∈P

we (1)

3. DISTRIBUTED SOURCE CODING AND DISPERSIVE
INFORMATION ROUTING

3.1 Information Theoretic Motivation

Figure 1 depicts a simple network with 3 sources(X1,X2 andX3)
and two sinks(S1 andS2). S1 requests forX1 andX2 while S2 re-
quests forX2 and X3. There is one intermediate node, c (which
we call the collector), which serves as a router. The sources can
communicate with the sinks only through the collector. This is a
toy example or simplification of a large sensor network with all in-
termediate nodes collapsed to a single collector node. Note that,
although the motivation is provided for clarity within the lossless
setting, the practical design approach will be generally applicable
to the lossy coding setting.

The collector has to transmit enough information toS1 so that
it can decode bothX1 andX2, and enough information toS2 to de-
codeX2 andX3. Hence the rates on the edges(c,S1) and (c,S2)
are at leastH(X1,X2) and H(X2,X3), respectively. Let the edge
weights into the collector be much smaller than out of the collector:
w1,c,w2,c,w3,c� wc,S1,wc,S2. This would force sourceX1 andX3 to
transmit data at ratesH(X1) andH(X3), respectively. As sourceX2
has to transmit enough data for both the sinks to decode it losslessly:

R2 ≥ max(H(X2|X1),H(X2|X3)) (2)

Conventional routing methods (designed for independent
sources) do not “split” a packet at an intermediate node and hence
would forward all the bits fromX2 to both the sinks. This would

Figure 2: Conventional DSC design

mean sub-optimality on either one of the branches(c,S1) or (c,S2)
if H(X2|X1) 6= H(X2|X3).

But instead, let us now relax this restriction and allow the col-
lector to “split the packet” and route only a subset of bits on each
edge. We could equivalently think of sourceX2 transmitting 3
smaller packets to the collector; first packet has rateR2,{1,2} bits
and is destined to both the sinks. Two other packets have ratesR2,1
and R2,2 bits and are addressed to sinksS1 and S2, respectively.
Technically, in this case, the collector would just have to route the
received packets. Perhaps surprisingly, it can be shown using ran-
dom product binning arguments similar to [13] that the rate tuple
(R2,{1,2},R2,1,R2,2) = (H(X2|X1,X3), I(X2,X3|X1), I(X2,X1|X3)) is
indeed achievable, and the rates on edges(c,S1) and(c,S2) achieve
their respective lower bounds, i.e., this routing approach is imple-
mented at no asymptotic rate loss, and hence outperforms conven-
tional routing.

We term such a routing mechanism, where each intermediate
node in a multi-hop network canroute any subset of the received
bits on each of the forward paths as “dispersive information rout-
ing” (DIR). Note the clear difference from network coding. DIR
does not require expensive coders at intermediate nodes, but rather
can always be realized using conventional routers with each source
transmitting multiple packets into the network intended to differ-
ent subsets of sinks. Also note that such a routing mechanism is
inessential when the sources are independent.

3.2 Conventional distributed source coder

We return to general lossy coding and begin with a description of
the conventional DSC system with a single sink. Consider N cor-
related sources,{Xi, i = 1...N} transmitting information at rateRi,
respectively, to the sink. The encoding consists of 2 stages. The
first stage is the discretization of the source-space by a high-rate
quantizer (a practical engineering necessity, see e.g., [11]), which
partitions the input source space intoNi regions, i.e.,

Hi : R → Qi = {1. . .Ni} (3)

Note that the high rate quantizers are designed independent of the
rest of the modules. The second stage, which we call the ‘Wyner-
Ziv map’ (WZ-map), is a module that relabels theNi quantizer re-
gions with a smaller number, 2Ri , of labels, which if properly de-
signed exploits the correlation between the sources and aids in dis-
tributed compression. Mathematically, for each sourcei, the WZ
map is the function,

Wi : Qi → Ii = {1. . .2Ri} (4)

and the encoding operation can be expressed as:

Ei(xi) = Wi (Hi (xi)) ∀i (5)

We useI = I1 × I2 . . . IN to denote the set of all possible received
symbols at the decoder. The decoderDi for each source is given by:

Di : I → X̂i ⊂ R (6)
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Figure 3: Integrated DSC and DIR

We next consider a network as formulated in section 2 with each
sink S j requesting for a subsetV j ⊆V of sources. We first describe
two routing options used in practice and point to their drawbacks.

1) Broadcasting : All the bits from each source are routed to all
the sinks (Broadcasted). Then the decoderDi j for sourceXi at sink
S j can be expressed as:

Di j : I → X̂i j ⊂ R ∀ j, i ∈V j (7)

Such a routing mechanism is obviously highly inefficient in terms of
communication costs, as unused information is delivered to various
sinks.

2) Conventional routing : All the bits transmitted by sourcei
are routed to its destination sinksS j ∈ S j. If we useIS j = ∏i∈S j Ii,
to denote the set of all possible received symbols at sinkS j, then the
decoderDi j can be expressed as:

Di j : IS j → X̂i j ⊂ R ∀ j, i ∈V j (8)

Such a routing technique is questionable in the presence of inter-
source dependencies. An unrequested but correlated source may
be nearer and provide “less costly” information on the sources re-
quested. Also, only a subset of the bits transmitted by a source may
be sufficient to reconstruct it at certain decoders (for eg. section
3.1).

3.3 Integrated DSC and dispersive routers

We now describe our approach to dispersive information routing.
We allow each bit to be routed to any subset of the sinks. We in-
troduce a new module at each encoder which decides the route for
each bit generated at that encoder. Note that if each bit follows the
route prescribed by the encoders, every intermediate node would
just be forwarding a subset of the received bits on each of the for-
ward paths. We call this module the “dispersive information router”
to indicate the routing mechanism it induces in the network. We de-
note byS = {S1,S2 . . .SM} the set of all sinks and by 2S the power
set (set of all subsets) ofS. Formally, the router at theith encoder is
given by:

Ci : {1. . .Ri}→ 2S (9)

and denote byC = C1×C2 . . .CN . The routers uniquely determine
the set of all the received bits at each sink. The decoder at each sink
is now modified to be the mapping:

Di j : I ×C → X̂i j ⊂ R ∀ j, i ∈V j (10)

The total communication costW of the system is given by:

W =
N

∑
i=1

Ri

∑
j=1

d∗
i (Ci( j)) (11)

and the average reconstruction distortion is measured as:

D = E





M

∑
j=1

|V j |

∑
i=1

γi jdi j(Xi, X̂i j)



 (12)

wheredi j : R×R → [0,1) is a well-defined distortion measure and
γi j are used to weigh the relative importance of each source at each
sink to the total distortion.

Hereafter, we will specialize to the squared error distortion. In
practice, we only have access to training sets and not the actual
source distributions. Assuming ergodicity, expectation is approxi-
mated by simple averaging over the training set. If the training set
is denoted asT , we measure distortion as,

D =
1

|T |



 ∑
x∈T

M

∑
j=1

|V j |

∑
i=1

γi j(xi − x̂i j)
2



 (13)

wherex = {x1 . . .xN}. The trade off between the distortion and the
communication cost is controlled using a Lagrange parameterλ ≥ 0
to optimize the weighted sum of the two quantities. From (13) and
(11), the Lagrangian cost to be minimized is:

L =



 ∑
x∈T

M

∑
j=1

|V j |

∑
i=1

γi j

|T |
(xi −Di j(I,C ))2



+λ
N

∑
i=1

Ri

∑
j=1

d∗
i (Ci( j)) (14)

whereI = [E1(x1),E2(x2) . . .EN(xN)]T denotes the set of all bits
being routed in the network. The objective is to findE ′

i s, C ′
i s and

D ′
i js that minimizeL for a givenλ .

3.4 Necessary conditions for optimality

In the following two sections, we derive the necessary conditions
for optimality of all modules and propose an iterative gradient based
method for optimal design.

1) Optimal encoders : Let Ti, j = {x ∈ T : Hi(xi) = j}. Note
that the second term in the Lagrangian does not depend on the WZ
maps and hence, from (14), the optimum WZ-map for fixed routers
and decoder codebook is given by:

Wi( j) = k∗ = argmin
k∈Ii

∑
x∈Ti, j

M

∑
m=1

|V j |

∑
l=1

γlm(xl −Dlm(Ii,k,C ))2 (15)

where

Ii,k = [E1(x1), . . . ,Ei−1(xi−1),k,Ei+1(xi+1), . . . ,EN(xN)]T

2) Optimal routers : For fixed encoders and decoders the opti-
mum dispersive information router for bitj transmitted by sourcei
is given by:

Ci( j) = e∗ = argmin
e∈2S

∑
x∈T

M

∑
m=1

|V j |

∑
l=1

γlm(xl −Dlm(I,Ce
i, j))

2 +λd∗
i (e)

(16)
where

C
e
i, j = [C1(1),C1(2) . . .Ci( j−1),e,Ci( j +1), . . .CN(RN)]T

3) Optimal decoders : If I = [E1(x1),E2(x2) . . .EN(xN)]T rep-
resents the bits transmitted from all the sources, and ife represents
the positions of bits received by a decoder, then we useIe to denote
the index represented by the bits inI at the positions indicated bye.
Setting to zero the gradient ofL (14) with respect to the reconstruc-
tion values, yields the optimal decoder:

x̂i j(I,e) = Di j(I,e) =
1

|F | ∑
x∈F

xi (17)

whereF = {x ∈ T : ([E1(x1),E2(x2) . . .EN(xN)]T )e = Ie}.
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3.5 Algorithm for joint DSC - DIR design

A natural design approach, given the necessary conditions for opti-
mality, is to use gradient descent. For each value ofλ , all the mod-
ules are initialized randomly and iteratively optimized till conver-
gence is reached. When each module is optimized, the Lagrangian
cost reduces. Since there are only a finite number of source parti-
tions possible, convergence to a locally optimal solution is (in prin-
ciple) guaranteed. An operational cost-distortion curve is obtained
by varyingλ , thereby trading off total communication cost to av-
erage distortion. To mitigate the issue of local minima, the system
is optimized over multiple random initializations. Global optimiza-
tion techniques such as DA [11], can be used to avoid poor local
minima, but are beyond the scope of this paper. Also note that the
proposed design approach is centralized in the sense that the opti-
mization is done offline, at a central location, before the network
operates. In this paper, we aim to establish potential gains from
using DIR in a practical setting, which in turn promotes future re-
search for developing efficient decentralized design strategies.

4. ANALOGIES TO DATABASE APPLICATIONS -
FUSION CODING

Consider a fusion center, which receives information from multiple
correlated sources and has to store the data for later retrieval and
usage, such as in a sensor network monitoring temperatures. Pe-
riodically, users request information fromsubsets of these sources
(“user queries” in database lingo), where the interesting subsets are
a priori unknown to the fusion center. Now, an interesting trade-
off between the (compression) storage rate and the retrieval time
(rate), very similar to the one discussed previously in the context of
networks, arises in such a setting. On the one hand, joint coding
of all the sources reduces the overall storage requirement. But on
the other hand, such joint coding may necessitate retrieval of all the
stored bits to decode any subset of the sources. Hence, joint coding
could be highly wasteful with respect to the amount of information
retrieved when a future query may select only a few of the sources
for retrieval.

Both the information theoretic (asymptotic) characterization [5]
and the practical fusion coder design [8, 9] have been considered
earlier. We refer the reader to these papers for a more compre-
hensive overview of the design approaches and trade-offs involved.
Here we briefly describe the motivation and the methodologies and
point out the similarities to dispersive information routing.

4.1 Information theoretic motivation (lossless setting)

ConsiderN correlated sources(X1,X2 . . .XN) to be stored at a fu-
sion center. Define a queryq (q ∈ Q) as the subset of sources that
need to be retrieved, whereQ is the set of all subsets of sources.
We assume that the user queriesq with a known prior probability
of P(q) (∑q∈Q P(q) = 1). The total storage rate is denoted byRs
and the average retrieval rate is denoted byRr. The number of bits
retrieved for queryq is denoted byRq.

First consider joint storage of all the sources. This requires
Rs = H(X1,X2 . . .XN) storage bits. But all the stored bits have to be
retrieved for any query implying an average retrieval rate of:

Rr = H(X1,X2 . . .XN) (18)

The minimum retrieval rate possible is given by,

Rr,min = ∑
q∈Q

P(q)H(Xq) (19)

which requires to be separately compressed and stored each subset
of sources that could be queried. Important intuition to be gained
from the above argument is that better retrieval rates can be ob-
tained by storing more bits than required and retrieving a subset of
them for each query. Information theoretic achievable bounds on
the minimumRr for a fixedRs were obtained in [5].

Figure 4: Fusion Coder

Note the similarities between dispersive information routing
and fusion coding. In the former, each sink uses a subset of the
transmitted bits to reconstruct the requested sources. Whereas in
the fusion coding setup, each query retrieves a subset of the stored
bits to reconstruct the queried sources. Similarly, note the analogy
between joint compression in the context of databases and broad-
casting in networks. Hence we use very similar design approaches
in both the contexts.

4.2 Fusion coder design

The Fusion Coder (FC) (Figure 4) is composed of three modules -
an encoder, a decoder and a ‘bit-subset selector’. The last module
forms the central component of FC as it retrieves a subset of the en-
coded bits for each query (subset of queried sources). The encoder
is defined by the function:

E : RN → I = {0,1}Rs (20)

which compresses theN dimensional input vector toRs bits. For-
mally, the bit-subset selector is the mapping:

S : Q → B = 2{1...Rs} (21)

whereB is the set of all subsets of the stored bits. Observe that
the role played by the bit-subset selector in the context of databases
resembles closely the function of the dispersive information routers
for networks. The decoder can be expressed as:

D : I ×B → X̂ ⊂ RN (22)

The average distortion and the average retrieval rate are given by:

D = E
[

dq(X ,D(E (X),S (q)))
]

Rr = ∑
q∈Q

P(q)|S (q)| (23)

A Lagrangian similar to (14) is set up to trade off distortion with
the retrieval rate. We refer the reader to [8] for further details on the
necessary conditions for optimality and the algorithm for system
design, which go hand in hand with those given in Section 3.4.

5. RESULTS

5.1 Dispersive information routing

We simulated a sensor network with 4 sinks located at the 4 ver-
ticess of a square grid(100×100). The sources and the interme-
diate nodes were placed randomly inside the grid, to mimic a real
world scenario with inaccessible regions. Each element in the re-
quest matrix,T , was generated using uniform binary(0,1) random
variable. We considered synthetic Gaussian sources,N(0,1), with
the correlation dropping exponentially with the distance. Specifi-
cally, the correlation between two sources at a distanced was as-

sumed to beρ
d

do . We used the square and cube of the distances
as the edge weights (we) for simulations 1 and 2 respectively. The
Steiner tree optimized costs(d∗

i s) were computed before the design
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Figure 5: Simulation results

of the modules, using an optimal Steiner tree algorithm2. In the
figures we use DIR to indicate our approach and CR to indicate
conventional routing.

For both our experiments, we choseρ = 0.95, do = 100 and
γi j = 1∀i, j. The system was trained using a training sequence and
tested on a test set, each of size 200,000. For a source transmitting
at a rateRi, the high rate quantizer partitioned the source space into
2Ri+3 regions, for eg. if the source rate was 2 bits,Ni = 32. For
all methods, we report the best performance over several random
initializations (limited to 25).

4 Sources : Figure 5a shows the results obtained for 4 sources
with 4 other intermediate nodes. The simulations were conducted at
two different source rates,Ri = 2 and 3. Our approach gains about
1.5 dB and 1 dB in distortion over conventional routing for the two
rates respectively. The reduction in gain forRi = 3 is probably due
to more local minima in the cost function at higher source rates.
For comparison, we have also indicated the distortion obtained with
conventional routing without using distributed compression.

8 Sources : We simulated the sensor grid with 8 sources at a
source rate ofRi = 2. Figure 5b shows a comparison between the
two approaches. Our approach gains about 1 dB in distortion over
conventional routing, or conversely, we gain about 1 dB in cost for
a fixed distortion.

5.2 Fusion coding

Similar plots were obtained to show distortion versus average re-
trieval rate for a database with 50 synthetic Gaussian sources with a
correlation coefficient of 0.8. Anexponential query distribution was
used to generate the queries. Further details on the implementation
are available in a coming paper [8]. As can be seen from Figure 5c,
our design approach reduces the retrieval rate by a factor of 3X (and
hence speeds up retrieval by about 3X), at a distortion of 8 dB.

6. CONCLUSION

We introduced dispersive information routing (DIR) which allows
for subsets of a source information to be directed towards differ-
ent sinks by intermediate nodes in the network. The approach was
motivated by consideration of a simple network and information
theoretic derivation in the lossless setting which clearly demon-
strate the means by which DIR gains over conventional approaches.
We proposed a joint optimization of distributed coding and dis-
persive router, and for practical demonstration implemented it via
gradient descent. We also pointed out the similarities to a related
problem of joint compression and selective retrieval of correlated
sources, which was studied recently in the context of sensor net-
work databases. Simulation results show considerable gains of our
approach over conventional methods. Future work includes obtain-
ing information theoretic bounds on the minimum achievable cost

2It is known that the optimum Steiner tree optimization is NP - Complete
and hence requires approximate algorithms to solve in practice for large
networks [2].

using DIR and developing distributed approaches for efficient de-
sign.
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