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ABSTRACT

We propose an audiovisual system for detecting the active speaker
in cluttered and reverberant environments where more than one per-
son speaks and moves. The feasibility of the systems is examined in
the context of smart-houses supporting elderly living alone. Rather
than using only audio, the system utilizes audiovisual information
from a minimal setup comprising of three microphones and one
camera feeding separate audio and visual tracking modules. The
audio module operates using a Particle Filter (PF) in order to pro-
vide accurate acoustic source location under reverberant conditions.
The visual module combines with a second PF video cues generated
by colour and face measurements. The final decision is performed
through the employment of a fusion mechanism that combines the
estimate of each modality according to the current observations.
Results indicate that the performance of the proposed multi-modal
tracking can potentially enable services for the elderly in their do-
mestic environment if those require knowledge of speaker.

1. INTRODUCTION

Due to the rising longevity phenomenon, we are witnessing a grow-
ing interest for pervasive context-aware services which target el-
derly users. Ambient assisted living solutions for the elderly target
a variety of assistive functionalities such as social integration and
decentralized communication support [5], as well as e-health and e-
care (e.g., facilitating caretakers and minimizing the need for hospi-
talization) [9]. In all of these scenarios signal processing is of great
importance since it provides means to implement various perceptual
components that are used to provide services.

Central requirement to the above scenarios is the problem of
detecting the location of the active speaker in an environment with
many people. This can facilitate creation of location dependent ser-
vices like targeted audio, emergency detection, and pre-filtering for
speech recognition (e.g. beamforming). Because of the potentially
large number of people moving and speaking in such cluttered envi-
ronments the problem remains challenging. Additionally, employ-
ing such systems in actual domestic environments typically involves
installation of expensive and sizable infrastructure.

Typical solutions to the problem employ multiple microphones
in the enclosure and the use of an Acoustic Source Localization
and Tracking (ASLT) system. Time Delay Estimation (TDE) meth-
ods, like the Generalized Cross Correlation (GCC) [7] remain the
most popular variants for feeding the systems that locate the active
speaker. The ASLT system then combines such estimates to return
the actual location. Three dimensional (3D) visual person track-
ing [8] from multiple cameras is considered to be more accurate
than audio based localization but evidently fails to detect by itself
the active speaker. Nevertheless, there have been efforts to fuse
the two modalities in the general scenario of person tracking where
each modality deals with the weaknesses of the other one. Most of
these approaches require a large number of sensors that are difficult
to install and generate large amounts of data with corresponding
processing power requirements.
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In this paper we present a real-time active speaker detection sys-
tem that utilizes both audio and video cues. In addition we assume
use of only one camera and three microphones in order to make the
system easier to employ in a real environment like the house of an
elderly. In this context, we first propose an ASLT system that uses
a state-space approach based on particle filters (PF) to recursively
estimate the probability density of the active speaker location. The
PF assumes that the source moves according to a specific model
that has a specific consistency from a time frame to the next one.
The functionality of this new ASLT system in detecting the active
speaker is extended by the use of a visual tracking system that em-
ploys face and color measurements in a partitioned sampling PF [8].
The fusion of the audio and visual tracks determines whether speech
is present and the location of the speaker.

The paper is organized as follows. In Section 2 we present the
audio module, followed by the visual one in Section 3. Section 4
discusses how the combination of the video and audio cues detects
the presence of speech and the active speaker. In Section 5 the per-
formance of the system is derived, showing ample improvement of
the audiovisual system over the audio one. Finally, conclusions are
drawn in Section 6.

2. AUDIO TRACKING MODULE

An ASLT system considers M microphones in a multi-path envi-
ronment. The sound source that the system attempts to locate and
track is assumed to be in the far field of the microphones. Assuming
a single source, the discrete signal recorded at the m" microphone
(m=1,2,...,M) at time k is:

rm(k) :hm(k)*s(k)Jrnm(k)v (D

where s(k) is the source signal, /,, (k) is the room impulse response
between the source and m’* microphone, n,,(k) is additive noise,
and * denotes convolution. The length of Ay, (k), and thus the num-
ber of reflections, is a function of the reverberation time Tgq (de-
fined as the time in seconds for the reverberation level to decay to
60 dB below the initial level) of the room and expresses one of the
main problems when attempting to track an acoustic source. This
is because when the system is used in reverberant environments the
source location estimate could occur in a spurious location created
by the ensuing reflections.

Given that ASLT systems typically operate in real-time, we
assume that data at each sensor m are collected over ¢ frames
r,(,i) = [rm(tL),rm(tL+1),...,ry(tL+ L —1)] of L samples. At
frame ¢ the representation of the microphone data is as follows:
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Most localization systems ignore the concatenation of frames
as seen in Eq. (2) and attempt to estimate the source location using
data from the current frame only i.e. using a single column from



Eq. (2). Most ASLT systems are based on TDE. In this case the
microphones are arranged in P pairs. Since the microphones of
each pair p reside in different spatial locations, their corresponding
recordings will be delayed with respect to each other by a relative
time delay 7,. TDE methods estimate the time difference between
the two microphones of each pair p. Using all estimated 7, the
localizer can then provide an estimate of the current source location.
Traditional systems typically do this by converting 7), to a line along
which the estimated source position is. The problem of localization
then reduces to finding the location which minimizes the distance
to each intersection points of the bearing lines [4].

In the context of the present work we use an alternative ap-
proach as described in [12]. These approaches use PFs to allow us
to integrate the properties of human motion as well as the track-
ing history provided by Eq. (2). The following paragraphs describe
the sub-systems of the audio tracker. These include the general PF
framework for localization, an extension to tackle competing and
interchanging speakers as well as the TDE function.

2.1 State-Space Estimation Using Particle Filters

Assuming a first order model for the acoustic-source dynamics the
source state at any frame ¢ is given as:

X = [Xm)’z,zmxtyy'mir]T 3)

where s; = [x;,y1,%] is the current source location estimate and
[%¢,¥r,2¢] the corresponding source velocity. If we calculate the
conditional probability density p(x;|yi:), we could then find the
source location by choosing the state that is more likely given the
sensor data until frame ¢. We can perform this by using the follow-
ing relationship [8]:

P(xe|y 1) o< p(ye|%e) p(%e [y 1:-1) “

where for clarity we have assumed y; = yr;. p(y:|X;) is called the
likelihood function and expresses the means with which we value
the states. p(x;|y1—1) is known as the prediction density and it is
given as [8]:

Pty = [ poalx)pGa Iyt Ddx )

where p(x;|x,_1) is the state transition density, and p(x;—_1|ri,—1)
is the prior filtering density. The solution to (4) and (5) can be found
using a Monte-Carlo simulation of a set of particles with associated
discrete probability masses that estimate the source state [8]. For
this we require a model of how the source propagates from x;_; to
x;. To keep consistent with the literature we will use the Langevin
model [10]. For the x;-coordinate this is defined as:

X = Oy —1 + BrGy (6)
X = X1 +AT% @)
Me=e PAT ®)

Br = vxy/1 -1 ©)

where G, is a normally distributed random variable, AT = L/ f; is
the time separating two location estimates and f; is the sampling
frequency. Also, v, refers to the steady-state velocity. Correspond-
ing equations apply for y; and z;.

We also need to decide on the likelihood functions that will
operate on the microphone data.

There are occasions where reverberation or noise sources can
lead the particles to get trapped in a spurious location. Given this,
we use the concept of an external particle filter e; that has the same
architecture as the main one x; but it is initialized repeatedly at ev-
ery frame ¢. The particles of e; are distributed randomly across the
entire room. Thus, if these new particles estimate a source loca-
tion that is d, m away from the main particle filter for a significant
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amount of time 7, s then we can reset the locations of the particles
of the main PF to those of the external. This also proves useful for
scenarios where competing speakers are placed far-apart. All three
possible combinations of the 3 microphones are used for TDE.
The general structure of the proposed PF framework can be
itemized as follows:
1. Start with a set of particles x(()l)7 1t =1...N with uniform weights

(1)

wy ,1=1...N. For every new frame of data perform steps 2-8.

1

2. Resample the particles from state x, *; using some resampling
method (we used the residual resampling algorithm) and form

the resampled set of particles Y 1=1...N.

—1°
®

3. Using the Langevin model, propagate X,

(1)

set of particles x; .

4. Take a set of frames of L samples from each microphone i.e.

r,(fl) ,m=1,2,...M and convert them into the frequency domain

using an L-point Short Time Fourier Transfor (STFT) to get
X5 = X (@0), Xn(1),- ... X0 1) ,m=1,2,...M. @ de-
notes the I discrete frequency bin with [ = 0,1,...L— 1.
5. Using a localization function convert the set of Xf,g) into a lo-
calization measurement i.e. a TDE measurement.
(v _

6. Weight the particles using the likelihood function i.e. w;’ =

| to predict the current

p(y,\x,(l)),l = 1...N and normalize the weights so that they
add up to unity.
7. The source location for the current frame s; is then given as the

weighted average of the particles: s; = levzl w,(l)l,(l). In the last
(1)

expression, 1,/ denotes the location vector of the 1" particle.

8. If the external PF et(L) returns a source estimate that remains at
(1)

a distance greater than d, m from the estimate of x;
than 7 sec then set xgl) = et(l),l =1...N.

for more

2.2 Time Delay Estimation

In this case microphones are organised in P pairs. Consider two mi-
crophones i, g belonging to the same pair p. Since the microphones
reside in different spatial locations, their corresponding recordings
will be delayed with respect to each other by a relative time delay
Tp. A variety of methods like the GCC [7] method (or one of its
variants) exist for TDE. For any pair p the GCC-Phase Transform

(GCC-PHAT) variant R;(7) is defined as the cross correlation of rlm
()

and ry’, filtered by a weighting function for a range of delays 7. In
the frequency domain this is given as:

1 .
Ri(7) = 5 Y. G@)Xi( @)X, (@)’ (10)
(2]

with G(ay) = (|Xi(col)Xq*(a);)|)*1. Ideally, R;(7) exhibits a global
maximum at the lag value which corresponds to the correct 7.

The GCC-PHAT algorithm is able to return accurate estimates
of the relative delay when the environment is anechoic. However,
it has a major drawback when used in an environment described
by (1). In that case, reflections result in decreased system robust-
ness since the peak provided by R;(7) may not always be the global
maximum. This is often the case when Ty is not relatively low.

At every frame ¢ and after the microphones are organised in
pairs, R;(7) is evaluated only at a set of candidate delays defined by
the location of every particle t. For two microphones i, j belonging
in the same pair p the delay is given as:

1(1)

" —m;
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Tp(x
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where m,, denotes the location of the m" microphone at the p'"

pair, ¢ the speed of sound (typically defined as 343m/s). The ||.||



operator denotes the Euclidean distance. The likelihood function
for particle 1 when TDE is used is given as:

Ri(p(xi)) (12)
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1

P

3. VISUAL TRACKER

The face bounding boxes are tracked on the image plane by means
of a Particle Filter (PF) tracker that employs two measurement cues:

e Face detection measurement: Face detection [13,14] offers very
precise localization of the face bounding box, but it is not always
present. Adverse poses, illumination and expressions can cause
a face to be missed by the detector, or may lead to ill-framing it
on the camera plane.

Color model matching: Matching the colors of the target model
against the colors of the pixels comprising the target will al-
ways yield a match, especially if the small variations in the tar-
get caused by illumination and its pose are learnt into the model.
On the other hand color matching is not guaranteed to offer pre-
cise localization in cases where the background has similar col-
ors to the target, especially since color modeling abstracts away
all structure of the colors in the target.

Hence the visual tracker employed in this system benefits both from
the precise localization of the face detection measurement and the
ubiquitous presence of color model matching by combining both
cues using the partitioned sampling approach [8]. To do so, a mea-
surement model p(y|x) describing the likelihood of a measure-
ment y given the state x is derived for both cues.

3.1 Face likelihood

The face detector employed comprises a boosted cascade of simple
classifiers [11], each classifier comprising stages of Haar-like fea-
tures whose number increases for classifiers down the cascade. The
features are selected using Adaboost during the training stage. The
implementation of the detector found in OpenCV [3] is used, and
the cascade is trained using 9,000 positive and 18,000 negative sam-
ples, minimum feature size 0, 99.9% hit rate and 50% false alarm
per cascade stage, horizontal and 45-degrees tilted Haar-like fea-
tures, non-symmetric faces, four splits and gentle AdaBoost learn-
ing. The positive samples are selected from various face databases,
all cropped slightly above the eyebrows to offer insensitivity to
hairstyles. Illumination insensitivity is increased both by using face
samples with illumination changes and by linearly equalizing illu-
mination in every candidate region, before applying the detector.
When the Viola-Jones frontal face detector is applied on an im-
age, a multitude of candidate face bounding boxes are returned.
Most of them are in groups, with minor variations of their loca-
tion and scale, bounding actual faces. Some other can be found
in much smaller density around non-frontal faces and even around
false alarms. All these say N bounding boxes form the measure-

],y () 1

» Yw [Yp y Yw ﬂ where Yp
the two-dimensional position of the i-th bounding box and y,(p is its
width. Note that the height needs not be specified, since the detector
has the same aspect ratio for all the faces it reports.

Given the state vector x = [x,hxw]T, the likelihood for the

face measurement y(face) receives contributions from candidate face
bounding boxes. These contributions should be larger as the bound-
ing box locations yg)
width y&',) approaches the state width x,,. Both goals are achieved
by defining the likelihood as

ment vector y(f2ce) = [y;,

approach the state location x,, and as their

i)
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K
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Figure 1: Image and associated face likelihoods according to eq.
(13), evaluated across all the image plane for three face widths.

-1

0, 1,2\
Note that each term <|| xXp—yp 2 /xw) +1 makes a

large contribution to the likelihood, close to unity if the distances
of the state and the bounding box positions are close to zero. The
exponent K governs how fast the contributions are attenuated as
these distances increase. A good choice is K = 2. The contributions

().

are weighted in the likelihood summation by the weights w e

P =exp (=[x o | /202)

w;' =exp
to penalize the contribution of candidate face bounding boxes that
are quite different in width than x,,. The reason the difference in
width is not included in the norm at the denominator of eq. (13)
is that differences in bounding box locations are not comparable in
scale to differences in bounding box widths. Putting width differ-
ences in the same norm as location differences would scale down
the importance of the former relative to the latter. Also note that the
weights in eq. (14) are not scaled to sum to unity. This is chosen so
that more than one similar detections would increase the likelihood
compared to a single detection. A necessary penalty to pay is that
the likelihood values in eq. (13) are not bounded by unity.

The face likelihood obtained by eq. (13) is a three-dimensional
function, one for each dimension of the state. An example is given
in Figure 1. Evaluating the likelihood for different state locations
xp results to the values of the different pixels on the likelihood plane
evaluating for the different state widths y&f) results to the different
likelihood planes. Note how the likelihood peaks in the vicinity
of the bounding boxes and does more so as more bounding boxes
are located nearby. Also note the effect of the weights in (14) in
selecting the faces of the wanted width.

(14)

3.2 Color likelihood

Color matching is evaluated using the similarity of a model his-
togram to a histogram extracted from a candidate region Ry corre-
sponding to the state x. To alleviate the limitations of color model-
ing regarding precise localization, color is modeled in subregions to
add structure to the model and the effect of similarly-colored back-
ground is attenuated with an immediate background histogram.

Let the target contain n, subregions with known spatial arrange-

ment within Rx. Then n, reference histograms hEe)f, i=1,...,n,

are trained using Ny, bins per color component and are compared to

the target histograms hg)

)_liz\/ ref

using the Bhattacharyya distance:

1s)



where hg? (n) and hS?f(n) are the n-th bins of the target and refer-
ence histograms of the i-th subregion.

The overall distance Dy rer for the multi-region color likeli-
hood is defined as the weighted average of the distances DU

Dearre = Y wi DO (16)
i=1

The weights WE;) are chosen based on the importance of each of the
subregions. We propose a color model based on four subregions.
These are defined based on the face detection: The eyes and lower
face subregions are located within the original face detection and
are obtained as fixed zones relative to it. The forehead-hair and up-
per torso subregions are cropped around the original face detection,
again with fixed sizes relative to it.

The likelihood for the color measurement y<C°1°r)

then is

» (y(color) |x> o exp <—Dtar,ref/20'c2010r> . a7

The sensitivity to background color similarities is alleviated by
attenuating the effect of colors that appear in the immediate back-

ground from the four subregion histograms hgé). To do so the
background histogram hyy, is calculated from the pixels across the

face. We calculate the bin values hg?hkg(n)’ n=1,..,N; of the

background-aware model histograms as follows: Let hgg”) be the
minimum non-zero bin value of hy;,. Define:
(min)
h
. bkg
= — 18
ap = min hbkg (I’l) s (18)
Then the bin values of hgbk o are given by:
B, (1) = an- b (n) (19)

Note that (19) yields a non-normalized histogram, whose bins need
to be normalized to sum up to unity.

3.3 Partitioned sampling PF tracker

The state-space comprises of the 2D position on the camera plane
and the face width. According to the partitioned sampling approach
[8], each of the measurement cues is used to update a subspace of
the state-space. We utilize face measurements to update position on
the camera plane. Subsequently, the position-updated particles are
re-assembled with their width dimension and are updated using the
color measurement. 50 particles are used.

4. AUDIOVISUAL FUSION

The audio and visual systems described in the previous sections
both give location estimates with some uncertainty. Referring to
Figure 2, the visual position on the image plane (due to the depth
uncertainty) corresponds to any point along the red line connecting
the origin of the camera coordinate system [x,, yy, zy] with the depth-
normalized coordinates v, from the visual track. The image plane
coordinates are transformed to v, using the intrinsic camera param-
eters [15]. Similarly, the audio position (with the height uncertainty
of the audio tracker) corresponds to any point along the green line
connecting the origin of the audio coordinate system [x4, 4,24 With
the depth-normalized coordinates a,, from the audio track.
Audiovisual fusion utilizes the intersection of the two lines, ef-
fectively eliminating the location uncertainty. Ideally the two lines
intersect, but in practice audio and visual tracking errors and the
different targets (mouth for the audio and center of vaguely frontal
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Figure 2: Normalized audio (a,) and visual (v,) estimations with
their uncertainties (green and red thick lines) on the respective co-
ordinate systems ([x4,Ya,2q] and [xy,yy,zy]), offset and rotated with
respect to the world coordinate system [x,y,z]. The audiovisual fu-
sion is the center [Xay,Yav,Zav] Of the minimum length (2e,,) seg-
ment connecting the uncertainty lines.

face for the visual tracker) result to no intersection. Instead we em-
ploy a least squares solution to find the point of minimum distance
from both lines, i.e. the center [Xay,Yav, Zqv] Of the minimum length
segment connecting the uncertainty lines. This minimum length is
2e,4y, and used as a measure of the quality of match of the audio
location with the visual one.

To formulate the problem, we need to relate the audio and visual
coordinate systems with the world coordinate system [x, y,z]. This is
done by finding the respective translation vectors T, and T, (green
and red dashed lines) as well as the rotation matrices R, and R,,.
For the visual coordinate systems, these are the extrinsic parameters
of the camera [15]. For the audio system, the translation vector is
simply the location reported by the audio tracker on the floorplan,
while the rotation matrix is the identity one, since the orientation
of the system does not change with respect to the world one. The
normalized audio coordinates then are the z-axis unity vector. Then
the least squares solution for x,, is obtained by solving:

I —R,v, 03
I 03

Xay = { T ] (20)

where I3 is the 3 x 3 identity matrix and O3 is the 3 X 1 zero vec-
tor. The system is solved using the pseudo-inverse of the left-hand
matrix.

5. PERFORMANCE DISCUSSION

At every frame, multiple visual targets from the people present and
a single audio one from the speaker are reported. The 2D accuracy
of the video tracks is quite high, especially with the faces at the
camera are approximately frontal, but there is no depth estimate.
The audio tracks are on the other hand quite accurate in estimat-
ing the angle from the microphones, but cannot give accurate depth
estimates. Also, when there is no speech the audio track is quite
erratic, jumping around the space.

In order to fuse the two modalities, both the camera and the mi-
crophones have to be related to the world coordinate system. For
the camera, this is done by calibrating it [2] to extract its intrin-
sic and extrinsic parameters. For the microphones, their position is
simply measured. The fused audiovisual estimate of the location is
obtained by attempting to associate the audio track with each of the
visual tracks and solving (20). Excessive approximation errors egy,



heights z,, and face widths (that are estimated as in [6], given the
depth from the camera and the tracked face bounding box) are used
to discount associations. If no association survived, then the system
assumes there is no speech, resulting to the audiovisual Voice Ac-
tivity Detection. If there is at least one surviving association, then
the fused location of the speaker is returned.

5.1 Performance Measures

We use a single metric to evaluate the different systems. For its
calculation we test the source location estimates provided by the
Audio and the Audio-Visual systems at each time frame against the
ground truth (this is a result of manual annotation), for the total
duration of the test signals.

The squared error for time frame 7 is given as & = ||s; — ;%
where S; denotes the actual (manually annotated) source location.
The metric used for comparison, the Root Mean Square Error
(RMSE) is defined as the square root of the average value of &
over the total number of frames. In the following results, the above
metric is presented in meters. The lower the values, the better the
performance of the corresponding system.

5.2 Experiments

To demonstrate the effect of video tracking upon active speaker lo-
calization we measured the performance of the audio tracker and
the multi-modal one upon the corpus created for the HERMES
project [1]. The corpus contains A/V recordings in typical reverber-
ant rooms equipped with three microphones and one camera. Col-
lection of audio data is performed using a total of three microphones
and one camera. The microphones are facing the expected location
of the speakers, while the camera is a bit off-center, at one of the
corners of the room. The recordings are conducted in presence of
ambient noise from both air-conditioning and personal computers.
Each recording consists of a discussion between 3 people sitting in
armchairs in front of a television set that hosts the 3 co-linear mi-
crophones being 0.2 m apart.

There exists significant interaction between the people with dis-
cussions that have movements of the speakers, interchanging speak-
ers and numerous acoustic events e.g. interruptions of the discus-
sion due to ringing mobile phones, people coughing and laughing.
The A/V data were manually annotated to provide the Cartesian lo-
cation and the speech activity of each participant at every frame of
video. These annotations are considered to be the ground truth for
the measurement of our system performance.

The audio system used N = 50 particles, L = 0.27 s and f; =
44.1 Khz. Also for the external PF, d, = 1 m and 7T, = 1 sec. The
reverberation time of the room was measured to be approximately
Tso = 0.5 s. The camera was recording at 10 frames per second
and 1600 x 1200 resolution. The faces are typically 60 to 65 pixels
wide. The associations of the audio with some visual track were
accepted is eqy, < 600mm, z4, € [700,2100)mm and the estimated
face widths are within [111,189]mm. These result to an equal rate
of correctly detected speech and silence at 83.5%. For the frames
correctly identified as containing speech, the RMSE of the audio-
only tracks is 771mm parallel to the microphone plane (x-axis) and
676mm perpendicular to it (y-axis). The equivalent RMSE for the
audiovisual tracks are 391mm and 354mm respectively, while for
height it is 146mm. All RMSE and numbers are less than half for
the audiovisual system leading to a more precise localization.

6. CONCLUSION

Performing acoustic source tracking to detect the active speaker in
the realistic environment of a moderately reverberant office room is
severely limited by reverberation and/or background noises. Under
these conditions, the use of the video modality can prove to be of
advantage compared to more traditional algorithms.

In this paper, we have presented a framework that integrated an
audio and a visual tracking system in order to extends the ability
of the system in order to track the active speaker or the one that
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last spoke. The system was designed keeping in mind the minimum
setup of 2 cameras and 3 microphones in order to be appropriate for
easy installation in homes of elderly users.

Using recordings in a cluttered meeting room, we have demon-
strated that the multi-modal framework outperforms the audio only
system in all scenarios. Thus, we have a system that remains ade-
quately robust, easy to employ and can serve as the necessary first
step in offering complex services in smart-homes.

REFERENCES

[1] HERMES (cognitive care and guidance for active aging) EU
FP7 STREP. http://www.fp7-hermes.eu.

[2] J.-Y. Bouguet. Camera calibration toolbox for mat-
lab. www.vision.caltech.edu/bouguetj/calib_doc/htmls/ pa-
rameters.html, 2008.

[3] G. Bradski, A. Kaehler, and V. Pisarevsky. Learning-based
computer vision with intel’s open source computer vision li-
brary. Intel Technology Journal, 9, 2005.

[4] M. Brandstein, J. Adcock, and H. Silverman. A closed-form
location estimator for use with room environment microphone
arrays. IEEE Trans. on Acoust. Speech and Sig. Proc., 5:45—
50, 1997.

[5] H. Istance, A. Hyrskykari, D. Koskinen, and R. Bates. Gaze-
based attentive user interfaces auis to support disabled users:
towards a research agenda. Proceedings of the 2nd Confer-
ence on Communication by Gaze Interaction: COGAIN 2006:
Gazing into the Future, 1:56-62, 2006.

[6] N. Katsarakis and A. Pnevmatikakis. Face validation using
3d information from single calibrated camera. In DSP’09:
Proceedings of the 16th international conference on Digital
Signal Processing, pages 972-977, Santorini, Greece, 2009.

[7] C. Knapp and G. Carter. The generalized correlation method
for estimation of time delay. IEEE Transaction on Acoustics
Speech and Signal Processing, 24(4):320-327, 1976.

[8] P. Perez, J. Vermaak, and A. Blake. Data fusion for visual
tracking with particles. Proc. of IEEE, 92(3):495-513, 2004.

[9] L. Portoni, C. Combi, and F. Pinciroli. User-oriented views
in health care information systems. I[EEE Transactions on
Biomedical Engineering, 49(12):1387-1398, 2002.

[10] J. Vermaak and A. Blake. Nonlinear filtering for speaker track-
ing in noisy and reverberant environments. /EEE Int. Conf. on
Acoustics, Speech and Signal Processing, 5:30213024, 2001.

[11] P. A. Viola and M. J. Jones. Rapid object detection using
a boosted cascade of simple features. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2001),
pages 511-518, Kauai, HI, USA, December 2001.

[12] D. Ward, E. Lehman, and R. Williamson. Particle filtering
algorithms for tracking an acoustic source in a reverberant en-
vironment. [EEE Trans. on Acoust. Speech and Sig. Proc.,
11(6):826-836, 2003.

[13] M.-H. Yang. Recent advances in face detection. In /EEE In-
ternational Conference on Pattern Recognition (ICPR 2004),
United Kingdom, August 2004.

[14] M.-H. Yang, D. J. Kriegman, and N. Ahuja. Detecting faces
in images: A survey. [EEE Trans. Pattern Anal. Mach. Intell.,
24(1):34-58, 2002.

[15] Z. Zhang. A flexible new technique for camera calibration.

1EEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(11):1330-1334, 2000.



