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ABSTRACT
An algorithm is presented for computing the singular value
decomposition (SVD) of a polynomial matrix. It takes the
form of a sequential best rotation (SBR) algorithm and con-
stitutes a generalisation of the Kogbetliantz technique for
computing the SVD of conventional scalar matrices. It
avoids ”squaring” the matrix to be factorised, uses only uni-
tary and paraunitary operations, and therefore exhibits a high
degree of numerical stability.

1. INTRODUCTION

Polynomial matrices have been used for many years in the
area of control [1]. They play an important role in the re-
alisation of multi-variable transfer functions associated with
multiple-input multiple-output (MIMO) systems. Over the
last few years they have become more widely used in the
context of digital signal processing (DSP) and communica-
tions [2]. Typical areas of application include broadband
adaptive sensor array processing [3, 4], MIMO communica-
tion channels [5–7], and digital filter banks for subband cod-
ing [8] or data compression [9].

Just as orthogonal or unitary matrix decomposition tech-
niques such as the QR decomposition (QRD), eigenvalue
decomposition (EVD), and singular value decomposition
(SVD) [10] are important for narrowband adaptive sensor ar-
rays [11], corresponding paraunitary polynomial matrix de-
compositions are proving beneficial for broadband adaptive
arrays [12–14] and also for filterbank design [15, 16]. In
a previous paper [17], we described a generalisation of the
EVD for conventional Hermitian matrices to para-Hermitian
polynomial matrices. This technique will be referred to as
PEVD while the underlying algorithm is known as the 2nd
order sequential best rotation (SBR2) algorithm.

In order to minimise the number of iterative steps re-
quired, and so prevent unnecessary growth in the order of
the polynomial matrix being diagonalised, the philosophy
adopted for the algorithm was one of sequential best rotation
(SBR). In the context of conventional Hermitian matrices,
this corresponds to the classical Jacobi algorithm [18]. The
SBR2 algorithm is, in effect, a generalisation of the classi-
cal Jacobi algorithm to the third (time) dimension associated
with polynomial matrices. A similar approach was subse-
quently adopted for polynomial matrix QR decomposition
(PQRD) [19].

For similar reasons, the PSVD algorithm outlined here
is also based on the SBR principle. It can be viewed as the
generalisation to polynomial matrices of an SBR algorithm
for computing the SVD of conventional matrices. Unlike the
case of Hermitian matrix EVD, no such algorithm seems to
exist already in the literature. This is not surprising since,

for conventional matrices, basing an algorithm entirely on
the SBR philosophy would not be computationally efficient.
Given a matrix X ∈ C

m×n, where we assume that m > n, it is
more efficient to begin the SVD by performing a QR decom-
position of the matrix since this only requires a fixed number
of carefully structured steps. In this case, a unitary matrix
Q ∈ Cm×m is computed s.t.

QX =

[
R
0

]
(1)

where R ∈ Cn×n is an upper triangular matrix with real diag-
onal elements. Computation of the SVD can then proceed by
treating R as a general square matrix and performing an itera-
tive sequence of Kogbetliantz transformations which is guar-
anteed to converge and reduce it to diagonal form. The Kog-
betliantz transformation may be viewed as a generalisation of
the classical Jacobi algorithm to non-symmetric (square) ma-
trices and also belongs to the class of SBR algorithms [18].
It results in a transformation of the form

Q1RV = Σ (2)

where Q1 ∈ Cn×n and V ∈ Cn×n are unitary matrices and
Σ ∈ Rn×n is diagonal. In combination, we have

UXV =

[
Σ

0

]
(3)

where U ∈ Cm×m is a unitary matrix given by

U =

[
Q1 0
0 I

]
Q (4)

and so this constitutes the SVD of X [10].

The first stage in developing a PSVD algorithm based
on the SBR philosophy, is to generate an SBR algorithm for
the case of conventional matrices. In effect, it is necessary
to merge the QR decomposition stage of the SVD algorithm
described above, into the iterative Kogbetliantz process. A
novel algorithm of this type is developed in the next section
for complex (scalar) matrices. Note that the complex case is
more involved than its real counterpart because of the need
to ensure that the diagonal elements remain real throughout
the process. This is vital for the Jacobi transformation step
which relies on Hermitian symmetry of the 2×2 sub-matrix
to which it is applied.
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2. MODIFIED KOGBETLIANTZ ALGORITHM
FOR COMPLEX NON-SQUARE MATRICES

Assuming that m > n, we seek to compute the SVD of a
matrix X ∈ C

m×n as defined by equation (3). Note that for
square matrices, it is not necessary to perform the initial QR
decomposition as indicated in equation (1) so the basic Kog-
betliantz method is sufficient. The corresponding PSVD al-
gorithm can easily be deduced from the one developed below
and will not be treated separately in this paper.

2.1 Initial phase adjustment
The algorithm begins by transforming the matrix to one with
real elements on the principal diagonal. This can be achieved
by multiplying the jth column by exp(−iα j) where α j is the
phase of x j j i.e. x j j =

∣∣x j j
∣∣exp(iα j). The same procedure

is applied to every column and so the entire process may be
written in the form

X← XT (5)

where T∈Cn×n is a diagonal matrix of phase rotations and is
therefore unitary. Note that ‖X‖ is not affected by this initial
phase adjustment (where ‖.‖ denotes the Frobenius norm of
a matrix or of a polynomial matrix as defined in [17]). The
algorithm ensures that each subsequent transformation main-
tains the real property of the diagonal elements of the matrix.
This occurs naturally with the Jacobi transformation which
preserves Hermitian symmetry, but requires more effort in
other cases.

The new SBR algorithm begins by locating the dominant
off-diagonal element of X (i.e. the one with greatest magni-
tude) denoted by x jk. The next step depends on whether or
not j > n.

2.2 Givens rotation
If j > n (i.e. if the dominant off-diagonal element lies outside
the upper n× n sub-matrix), compute and apply a complex
Givens rotation with rotation parameters defined by

[
c seiφ

−se−iφ c

][
xkk
x jk

]
=

[
x′kk
0

]
(6)

where c = cosθ , s = sinθ , and xkk, x′kk∈ R. This requires

−se−iφ xkk + cx jk = 0 (7)

while

x′kk = cxkk + seiφ x jk (8)

Denoting x jk =
∣∣x jk

∣∣eiω , it is clear that we must have φ =−ω
to ensure that x′kk is real. Equation (7) then becomes

−seiω xkk + c
∣∣x jk

∣∣eiω = 0 (9)

which is satisfied by

tanθ =
∣∣x jk

∣∣/xkk (10)

We denote this transformation by

X′ = G(θ ,φ)X (11)

where X′ ∈ C
m×n and G(θ ,φ) ∈ C

m×m takes the form of a
suitably embedded Givens rotation [10] - i.e. an m×m unit

matrix except for the (k,k),(k, j),( j,k) and ( j, j) elements
which serve to embed the 2× 2 rotation matrix in equation
(6). This completes the elementary transformation for the
case j > n. In preparation for the next iteration the input ma-
trix is now updated by setting X←X′. Note that ‖X′‖= ‖X‖
and that for each iteration, ‖diag(X)‖2 (the on-diagonal en-
ergy) increases while ‖offdiag(X)‖2 (the off-diagonal en-
ergy) decreases by the same amount. The operator G(θ ,φ)
in equation(11) contributes to the overall transformation U in
equation (3).

2.3 Complex Kogbetliantz transformation

If j ≤ n (i.e. if the dominant off-diagonal element of X lies
within the upper n× n sub-matrix), perform the following
complex Kogbetliantz transformation designed to eliminate
both x jk and xk j [18]. This transformation may be broken
down into three simple steps - a Givens rotation and a sym-
metrisation followed by a standard Jacobi transformation.
The Givens rotation step, which would not be required in the
real case, is needed here to ensure that the symmetrisation
step leaves the diagonal elements entirely real. First, swap
the indices j and k, if necessary, so that j > k. It is advisable
also to swap rows j and k, and columns j and k, so that the
Givens rotation which follows, is never used to eliminate a
zero element and thus become numerically ill-defined.

2.3.1 Givens rotation

Compute and apply a Givens rotation of the form

[
c seiφ

−se−iφ c

][
xkk xk j
x jk x j j

]
=

[
x′kk x′k j
0 x′j j

]
(12)

where x j j, xkk and x′kk ∈ R. This requires the same choice of
rotation parameters as the Givens rotation applied if j > n.
However we also have

x′j j =−seiω xk j + cx j j (13)

This quantity is not necessarily real, so a further phase ad-
justment is required. Denote x′j j =

∣∣∣x′j j

∣∣∣eiβ and multiply the

jth row of the matrix by e−iβ . This ensures that the matrix
still has real elements on the diagonal. Denote the embed-
ded Givens rotation, together with any phase adjusment and
interchange of rows and columns, by

X′ = F(θ ,φ ,β )X (14)

where F(θ ,φ ,β ) ∈ Cm×m. Once again, since this combined
transformation is unitary, it can be seen that ‖X′‖= ‖X‖ and
that ‖diag(X)‖2 increases while ‖offdiag(X)‖2 decreases by
the same amount.

2.3.2 Symmetrisation

Next, compute and apply a plane rotation with parameters
chosen s.t.

[
c′ s′eiφ ′

−s′e−iφ ′ c′

][
x′kk x′k j
0 x′j j

]
=

[
x′′kk x′′k j
x′′jk x′′j j

]
(15)
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where c′ = cosθ ′, s′ = sinθ ′, x′kk,x
′
j j,x
′′
kk,x

′′
j j ∈ R and x′′k j =

x′′∗jk . This requires

c′x′k j + s′eiφ ′x′j j =−s′eiφ ′x′kk (16)

We also have

x′′kk = c′x′kk (17)

and

x′′j j =−s′e−iφ ′x′k j + c′x′j j (18)

Clearly x′′kk is real. Denoting x′k j =
∣∣∣x′k j

∣∣∣eiγ , it can be seen

that we require φ ′ = γ to ensure that x′′j j is real. Equation
(16) then takes the form

c′
∣∣x′k j

∣∣eiγ + s′eiγ x′j j =−s′eiγ x′kk (19)

which is satisfied by

c′
∣∣x′k j

∣∣ =−s′(x′kk + x′j j) (20)

i.e

tanθ ′ =−
∣∣x′k j

∣∣/(x′kk + x′j j) (21)

We denote the embedded rotation of equation (15) by

X′′ = Q(θ ′,φ ′)X′ (22)

where X′′ ∈ C
m×n and Q(θ ′,φ ′) ∈ C

m×m. Note once again
that ‖X′′‖= ‖X′‖.

2.3.3 Jacobi transformation

Finally, given the matrix X′′ resulting from the symmetri-
sation, compute and apply a Jacobi transformation with the
rotation parameters chosen s.t.

[
c′′ s′′eiφ ′′

−s′′e−iφ ′′ c′′

][
x′′kk x′′k j
x′′jk x′′j j

][
c′′ −s′′eiφ ′′

s′′e−iφ ′′ c′′

]

=

[
x′′′kk 0
0 x′′′j j

]

where x′′kk,x
′′
j j,x
′′′
kk and x′′′j j are real and x′′k j = x′′∗jk . Since the

Hermitian symmetry is preserved, x′′′kk and x′′′j j are guaranteed
to be real. The required rotation parameters are given by

tan2θ ′′ = 2
∣∣x′′k j

∣∣/(x′′kk− x′′j j) (23)

and φ ′′ = δ where x′′k j =
∣∣∣x′′k j

∣∣∣eiδ [10]. We denote the Jacobi
transformation by

X′′′ = J′(θ ′′,φ ′′)X′′J(θ ′′,φ ′′) (24)

where J ∈ Cn×n is the embedded transformation represented
above, X′′′ ∈ Cm×n and J′ ∈ Cm×m takes the form

J′ =
[

JH 0
0 I

]
(25)

The complex Kogbetliantz transformation (including the ad-
ditional triangularisation step) may be expressed in the form

X′′′ = J′(θ ′′,φ ′′)Q(θ ′,φ ′)F(θ ,φ ,β )XJ(θ ′′,φ ′′) (26)

This completes the elementary transformation for the case
j ≤ n. In preparation for the next iteration the input ma-
trix is now updated by setting X← X′′′. Note, once again,
that ‖X′′′‖ = ‖X‖ and that, as a result of the Kogbetliantz
transformation, ‖diag(X)‖2 increases while ‖offdiag(X)‖2

decreases by the same amount. The combined operator
J′(θ ′′,φ ′′)Q(θ ′,φ ′)F(θ ,φ ,β ) applied from the left in equa-
tion (26) contributes to the overall transformation U in equa-
tion (3) while the operator J(θ ′′,φ ′′) applied from the right
contributes to V.

The process of locating the dominant off-diagonal ele-
ment, and then eliminating it using either a Givens rotation
(for j > n ) or a complex Kogbetliantz transformation (for
j ≤ n), is repeated until the dominant off-diagonal element
is sufficiently small. Again, as for the conventional Kog-
betliantz algorithm [18], this process is guaranteed to con-
verge so that

X→
[

Σ

0

]
(27)

3. GENERALISATION TO POLYNOMIAL
MATRICES

Assume, without loss of generality, that we are given a poly-
nomial matrix of the form

X(z) =
T

∑
t=0

z−t X(t) (28)

where X(t) (t = 0,1, . . .T ) ∈Cm×n and m > n. As before, the
algorithm for square polynomial matrices may be deduced
very simply as a special case of what follows. We seek to
compute and apply a transformation of the form

U(z)X(z)V(z) =

[
D(z)

0

]
(29)

where D(z) is an n×n diagonal polynomial matrix and U(z)
and V(z) are paraunitary polynomial matrices of dimension
m×m and n×n respectively i.e.

U(z)Ũ(z) = Ũ(z)U(z) = Im (30)

and

V(z)Ṽ(z) = Ṽ(z)V(z) = In (31)

The tilde notation denotes paraconjugation of a polynomial
matrix as defined in [2].

The algorithm described here generalises the modified
Kogbetliantz algorithm, detailed above, to polynomial ma-
trices in a manner similar to that in which the SBR2 al-
gorithm generalises the classical Jacobi algorithm to para-
Hermitian polynomial matrices [17]. It begins by transform-
ing the polynomial matrix X(z) so that X(0), the coefficient
matrix of order zero (referred to here as the zero-plane ma-
trix), has real diagonal elements. This is accomplished using
a diagonal phase rotation matrix of the type represented by
equation (5). The algorithm continues by locating the domi-
nant off-diagonal coefficient in X(z), denoted here by x jk(t),
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and shifting it to the zero-plane matrix using a pure delay
transformation of the form

X′(z) = B(k,t)
1 (z)X(z)B(k,t)

2 (z) (32)

where

B(k,t)
1 (z) =

[ Ik−1 0 0
0 z−t 0
0 0 Im−k

]
(33)

and

B(k,t)
2 (z) =

[ Ik−1 0 0
0 zt 0
0 0 In−k

]
(34)

Note that the diagonal elements are not affected by this trans-
formation which results in x′jk(0) = x jk(t).

Having shifted the dominant off-diagonal coefficient to
the zero-plane matrix X′(0), a modified Kogbetliantz trans-
formation, as defined in section 2, is computed with respect
to this matrix in order to drive the dominant coefficient to
zero. The sequence of transformations required for the mod-
ified Kogbetliantz transformation is then applied to the entire
polynomial matrix X′(z), i.e. to every coefficient matrix in
X′(z) including X′(0). In preparation for the next iteration,
the transformed polynomial matrix X′(z) is then redesignated
as X(z).

The process of locating the dominant off-diagonal co-
efficient, moving it to the zero-plane, and eliminating it by
means of a modified Kogbetliantz transformation, is repeated
iteratively until the dominant off-diagonal coefficient is suffi-
ciently small. Noting that ‖diag(X(0))‖ increases monoton-
ically throughout the entire iterative process while ‖X(z)‖
remains invariant, it can easily be shown that this procedure
converges to produce a diagonalised matrix Γ(z) of the form
specified on the right hand side of equation (29). The proof
follows a similar line of argument to that used to prove the
convergence proof of the SBR2 algorithm [17].

4. NUMERICAL EXAMPLE

The performance of the PSVD algorithm outlined in section
3 is illustrated here by means of a simple numerical example.
A 5× 3 polynomial matrix X(z) of order 2 was generated
with the real and imaginary components of its complex co-
efficients selected randomly from a normal distribution with
mean 0 and variance 1. This matrix is depicted in figure 1,
where the absolute values of the polynomial coefficients are
plotted in the 5× 3 array of stem plots. Figure 2 provides a
similar representation of the diagonalised polynomial matrix
Γ(z) obtained using the PSVD algorithm after 318 iterations,
when the magnitude of the dominant off-diagonal coefficient
was < 0.005. The value of this quantity as a function of it-
eration number is plotted in figure 3 which shows that the
convergence of the algorithm is quite rapid but, as expected,
non-monotonic [17]. From figure 2 it can be seen that the
output matrix Γ(z) takes the required form. The value of
‖offdiag(Γ(z))‖2 was found to be 0.0005 as compared to the
value of ‖Γ(z)‖2 which was 70.81.
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Figure 1: Input 5×3 Polynomial Matrix X(z).
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Figure 2: Output matrix Γ(z) produced by PSVD algorithm

4.1 Comparison with alternative SBR2 method
An alternative approach to computing the PSVD in equa-
tion (29) is to form the polynomial matrix products P1(z) =

X(z)X̃(z) and P2(z) = X̃(z)X(z) of dimension 5× 5 and
3× 3 respectively. Using the SBR2 algorithm to compute
the PEVD of P1(z) and P2(z) respectively, serves to gener-
ate the paraunitary matrices U(z) and V(z) required for the
transformation in equation (29). The output matrix Γ(z) pro-
duced using this alternative method is depicted in figure 4.
Once again this can be seen to take the required diagonal
form. However, ‖offdiag(Γ(z))‖2 now takes the value 2.32
which is much greater than that achieved using the PSVD al-
gorithm of section 3. This illustrates the reduced numerical
precision which arises from forming the product matrices in
the PEVD method.

5. CONCLUSIONS

An algorithm for computing the PSVD of a complex poly-
nomial matrix, based on a generalisation of the Kogbetliantz
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Figure 3: Convergence of PSVD algorithm: magnitude of
the dominant off-diagonal coefficient plotted as a function of
iteration number.
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Figure 4: Output matrix Γ(z) produced by SBR2 algorithm

method for complex scalar matrices, has been presented. The
results obtained for a simple numerical example demonstrate
that the new PSVD algorithm can work well in practice. A
comparison with the alternative PEVD approach based on the
SBR2 algorithm demonstrated, as expected, that the PSVD
algorithm generates a more accurate decomposition for the
same example.
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