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ABSTRACT
A new adaptive scheme for system identification is pro-
posed. The derivation of the algorithm and its convexity
property are detailed. Also, the first moment behaviour
as well as the second moment behaviour of the weights
are studied. Bounds for the step size on the conver-
gence of the proposed algorithm are derived, as well as
the steady-state analysis is carried out. Finally, simula-
tion results are performed and are found to corroborate
with the theory developed.
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1. INTRODUCTION

The least mean square (LMS) algorithm [1] is one of the
most widely used adaptive schemes. Several works have
been presented using the LMS or its variants, such as
signed LMS [2]-[3], the least mean fourth (LMF) algo-
rithm and its variants [4], or the mixed LMS-LMF [5]-[7]
all of which are intuitively motivated.

The LMS algorithm is optimum only if the noise
statistics are Gaussian. However, if these statistics are
different from Gaussian other criteria, such as lp-norm
(p 6= 2), perform better than the LMS algorithm, [4],
[8], [9]. The idea here is to use a mixed controlled l2− lp
adaptive algorithm. This is similar to that given in [7]:

Jn = αE[e2
n] + (1− α)E[e4

n], (1)

where the error is defined as follows:

en = dn + wn − cT
nxn, (2)

dn is the desired value, cn is the filter coefficient of the
adaptive filter, xn is the input vector, wn is the addi-
tive noise, and α is the mixing parameter between zero
and one and set in this range to preserve the unimodal
character of the cost function. It is clear from (1) that
if α = 1 the algorithm reduces to the LMS algorithm, if
however, α = 0 the algorithm is the least-meam fourth
(LMF) [4]. Any choice for α in the interval (0,1) en-
hances the performance of the algorithm.

The algorithm for adjusting the tap coefficients, cn,
is given by the following recursion:

cn+1 = cn + µ{α + 2(1− α)e2
n}enxn. (3)

Adaptive filter algorithms designed through the mini-
mization of equation (1) have a disadvantage when the
absolute value of the error is greater than one. This will
make the algorithm go unstable unless either a small
value of the step size or a large value of the controlling
parameter are chosen such that this unwanted instability
disappears. lp-norm based minimization algorithms for
signal parameter estimation or minimization algorithm
of mixed l1 and l2 norms can be found in literature, [12],
[13].

Unfortunately, a small value of the step size will
make the algorithm converge very slowly, and a large
value of the controlling parameter will make the LMS
algorithm essentially dominant.

The rest of the paper is organized as follows: Sec-
tion 2 describes the proposed algorithm as well as its
convexity property. In Section 3 the convergence anal-
ysis is detailed, while Section 4 the simulations results
reports the performance behavior of the proposed algo-
rithm. Finally, Section 5 concludes the work reported
in this paper.

2. PROPOSED ALGORITHM

To overcome the above mentioned problem a modified
approach is proposed where both constraints of the step
size and the control parameter are eliminated. The pro-
posed criterion consists of the cost function (1) where
the lp-norm is substituted for the l4-norm. Ultimately,
this should eliminate the instability in the l4-norm, es-
pecially if p < 4, and retains the good features of (1),
i.e., the mixed nature of the criterion. The proposed
scheme is defined as:

Jn = αE[e2
n] + (1− α)E[|en|p], p ≥ 1, (4)

If p = 2, the cost function defined by (4) reduces to
the LMS algorithm whatever the value of α in the range
[0,1] for which the unimodality of the cost function is
preserved.

For α = 0, the algorithm reduces to the lp-norm
adaptive algorithm, and moreover if p = 1 results in the
familiar signed LMS algorithm.

For p < 2, lp gives less weight for larger error and this
tends to reduce the influence of aberrant noise, while
it gives relatively larger weight to smaller errors and
this will improve the tracking capability of the algorithm
[14].
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2.1 Convex property of performance function

We can prove that the performance function

J(c) = αE[e2
n] + (1− α)E[|en|p] (5)

is a convex function defined on R(N1+N2) for p ≥ 1.

2.2 Analysis of the error surface

• Case p = 2:
Let the input autocorrelation matrix be R = E[xnxT

n ],
and the crosscorrelation vector that describes the cross-
correlation between the received signal (xn) and the de-
sired data (d̂n), p = E[xndn]. The error function can
be more conveniently expressed as follows:

Jn = σ2
x − 2cT

np + cT
nRcn. (6)

It is clear from (6) that the mean-square error (MSE)
is precisely a quadratic function of the components of
the tap coefficients, and the shape associated with it
is hyperparaboloid. The adaptive process continuously
adjusts the tap coefficients, seeking the bottom of this
hyperparaboloid.

copt = R−1p (7)

• Case p 6= 2:
It can be shown as well that the error-function for the
feedback section will have a global minimum since the
latter one is a convex function. As in the feedforward
section, the adaptive process will continuously seek the
bottom of the error-function of the feedback section.

2.3 The updating scheme

The updating scheme is given by:

cn+1 = cn + µ[αen + p(1−α)|en|(p−1)sign(en)]xn, (8)

and sufficient condition for convergence in the mean of
the proposed algorithm can be shown to be given by:

0 < µ <
2

{α + p(p− 1)(1− α)E[|wn|p−2]}tr{R} (9)

where tr{R} is the trace operation of the autocorrela-
tion matrix R.

In general, the step size is chosen small enough to en-
sure convergence of the iterative procedure and produce
less misadjustment error. In the ensuing, the conver-
gence analysis of the proposed l2 − lp is carried out.

3. CONVERGENCE ANALYSIS

Usual assumptions [8], [10], [11], [9] that can be found in
literature and which can also be justified in several prac-
tical instances are used during the convergence analysis
of the proposed mixed controlled l2 − lp algorithm.

3.1 First Moment Behavior of the Weights

We start by evaluating the statistical expectation of
both sides of (8) which looks after subtracting copt of
both sides to give:

vn+1 = vn + µ[αen + (1− α)sign(en)]xn. (10)

After substituting the error en defined by Equation (2)
in the above equation and taking the expectation of both
sides results in:

E[vn+1] = [I− αµR] E[vn] + µ(1− α)E [xnsign(en)] (11)

It is to show that the mis-alignment vector will converge
to the zero vector if the step-size, µ, is given by

0 < µ <
2[

α + (1− α)
√

2
πJmin

]
λmax

, (12)

where λmax is the largest eigenvalue of the autocorre-
lation matrix R, since in general tr{R} >> λmax, and
Jmin is the minimum MSE.

3.2 Second Moment Behavior of the Weights

From Equation (10) we get the following expression:

vn+1vT
n+1 = vnvT

n + µ [αen + (1− α)sign(en)]

× [
vnxT

n + xnvT
n

]
+ µ2

× [
α2e2

n + 2α(1− α)|en|+ (1− α)2
]
xnxT

n . (13)

Let Kn = E[vnvT
n ] define the second moment of the

misalignment vector, therefore the above equation, after
taking the expectation of both of its sides, becomes as
follows:

Kn+1 = Kn + µα
{
E

[
vnxT

nen

]
+ E

[
xnvT

n en

]}

+µ(1− α)
{
E

[
vnxT

nsign(en)
]
+ E

[
xnvT

n sign(en)
]}

+µ2
{
α2E

[
xnxT

ne2
n

]
+ 2α(1− α)E

[
xnxT

n |en|
]

+(1− α)2R
}

. (14)

Two cases can be considered for the step size µ so
that the weight vector converges in the mean square
sense.

• First case i 6= j:
In this case, a sufficient condition for mean square

convergence can be shown to be given by the following:

0 < µ <
1[

α + (1− α)
√

2
πJmin

]
tr{R}

. (15)

• Second case i = j:
Whereas here, the convergence in the mean square

sense will be given by:

0 < µ <
2

[
α + (1− α)

√
2
π

1
σen

]

[
α2 − 2α(1− α)

√
2
π

1
σen

]
λi

. (16)
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Discussion:

Note that if α = 0 will result in zero in
the denominator of expression (16) and therefore
will make µ take any value in the range of
positive numbers, a contradiction with the
ranges of values for the step sizes of LMS and
LMF algorithms. Moreover, any value for α in
]0, 1[ will make of the step size µ set by (16) less
than zero, also this condition is discarded. This
concludes that it is safer to use a more realistic
range for the step size µ for convergence in the
mean square dictated by the range of (15) which
will guarantee stability regardless of the value of
α, and therefore will be considered here.

4. SIMULATION RESULTS

In this section, the performance analysis of the proposed
mixed controlled l2 − lp adaptive algorithm is investi-
gated in an unknown system identification problem for
different values of p and different values of the mixing
parameter α. The simulations reported here are based
on an FIR channel system identification. Furthermore,
we have considered the following channel:

copt = [0.227, 0.460, 0.688, 0.460, 0.227]T .

Three different noise environments have been considered
namely gaussian, uniform, and laplacian. The length of
the adaptive filter is the same as that of the unknown
system. The learning curves are obtained by averaging
600 independent runs. Two scenarios are considered for
the case of the value of p, i.e., p = 1 and p = 4. The
signal-to-noise ratio (SNR) is set to 10 dB throughout
the simulations. Finally, the performance measure most
appropriate to system identification problem considered
here is the normalised weight error norm defined

10log10
||c(n)− copt||2

||copt||2 ,

where copt is the impulse response of the unknown sys-
tem. The learning curves obtained are the average of
600 runs.

Figure 1 depicts the convergence behavior of the pro-
posed algorithm for different values of α and p = 1 in
a white Gaussian noise, Laplacian noise, and uniform
noise, respectively. As can be depicted from this figure
the best performance is obtained when α = 0.8. This
makes sense as the resultant algorithm is steering to-
wards the LMS algorithm.

Also, as can be seen from these figures that the best
performance, as far as the noise statistics are concerned,
is obtained when the noise environment is Laplacian,
then gaussian and finally uniform. This makes sense as
the update algorithm is biased to the sign error LMS
algorithm as α approaches zero. If one compares the
performance of the proposed algorithm when the noise
statistics are Laplacian, one sees clearly that an en-
hancement in performance is obtained and about a 2dB
improvement is achieved for all values of α.

The situation changes when p = 4 as reported in
Fig. 2 which depicts the convergence behavior of the
proposed algorithm for different values of α in a white
Gaussian noise, Laplacian noise, and uniform noise, re-
spectively. As can be depicted from this figure, the best
performance is obtained when α = 0.2 as the proposed
algorithm is mostly LMF in this case. More importantly,
the best noise statistics for this scenario is when the
noise is uniformly distributed. Similarly as above if one
compares the performance of the proposed algorithm
when the noise statistics are uniform, one sees clearly
that an enhancement in performance is obtained and
about a 2dB improvement is achieved for all values of
α. Also, one can notice that the worst performance is
obtained when the noise is Laplacian distributed.

Next, to assess further the performance of the pro-
posed algorithm for the same steady-state value, two
different cases are considered, for p = 1 and p = 4 when
α = 0.8. Figure 3 illustrates the learning behavior of
the proposed algorithm for p = 1. As can be seen from
this figure that the best performance is obtained with
Laplacian noise while the worst performance is obtained
with Uniform noise environment.

In the case of p = 4, as reported in Fig. 4 which
depicts the learning behavior of the proposed algorithm
in the different noise environments, it can be seen that
the best performance is obtained with Uniform noise
environment. The Laplacian noise results in the worst
performance when compared to Gaussian and Uniform
noise environments.

5. CONCLUSION

A new adaptive scheme for system identification has
been introduced. The derivation of the algorithm is
worked out and the first moment behaviour as well as
the second moment behaviour of the weights are stud-
ied. Bounds for the step size on the convergence of the
proposed algorithm are derived. Finally, simulations
are found to be in good agreement with the theory
developed here.
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Figure 1: Effect of α on the learning curves of the pro-
posed algorithm in an AWGN noise environment sce-
nario for p = 1.

0 500 1000 1500 2000 2500 3000
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Iterations

N
or

m
al

iz
ed

 W
ei

gh
t E

rr
or

 V
ec

to
r(

dB
)

 

 

α=0.2 α=0.4 α=0.6 α=0.8

Figure 2: Effect of α on the learning curves of the pro-
posed algorithm in an AWGN noise environment sce-
nario for p = 4.
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Figure 3: Learning behavior of the proposed algorithm
in the different noise environments scenario for p = 1
and α = 0.8.

0 100 200 300 400 500 600 700 800 900 1000
−40

−35

−30

−25

−20

−15

−10

−5

0

Iterations

N
or

m
al

iz
ed

 W
ei

gh
t E

rr
or

 V
ec

to
r(

dB
)

 

 

Gaussian LaplacianUniform

Figure 4: Learning behavior of the proposed algorithm
in the different noise environments scenario for p = 4
and α = 0.8.
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