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ABSTRACT

We address a smoothing finite impulse response (FIR) fil-
ter for discrete time-invariant state-space polynomial models
commonly used to model signals over finite data. A gen-
eral gain is derived for the relevant p-lag unbiased smooth-
ing FIR filter. An application is given for the time interval
errors of local slave clocks of digital communications net-
works. An excellent performance of the best unbiased fit is
demonstrated along with its ability to extrapolate linearly the
clock behaviors for holdover required by the IEEE Standards.

1. INTRODUCTION

Estimation and denoising of polynomial models measured in
different noise environment is efficiently provided using the
finite impulse response (FIR) p-lag smoothers [1-3], relat-
ing the estimate to the past discrete point n+ p, p < 0, or
smoothing FIR filters [4, 5], which estimates are provided
at the present point n via past and future. In digital net-
works employing local time scales formed by precision local
clocks [6, 7], smoothing commonly solves three main prob-
lems. It can be used to estimate the initial clock state for the
Kalman filtering of clock state, provide maximum denois-
ing at some past points [1,4], and obtain the best fit in order
to predict future clock behaviors [8,9]. The latter is espe-
cially important for “holdover”, when a synchronizing signal
is temporary not available [10].

Because noise in clocks is not white [6], the best fit is
achieved if one uses an averaging FIR smoother structure
[11, 12] and not the recursive Kalman one. Although some
recent efforts were made in this direction for clocks [13, 14],
a general p-lag smoothing FIR filter for discrete-time state-
space polynomial models still was not addressed. In this pa-
per, we solve this problem in general terms for a variety of
applications and give an examples for a slave precision crys-
tal clock of a digital communications network node and a
master clock.

2. POLYNOMIAL SIGNAL MODEL

Consider a signal x, representing the kth state, k € [1,K], of
a K-state system. Suppose that a polynomial signal xy,, k =
1, representing the first state is projected fromn—N+1—p
to n with the finite Taylor series expansion of order K — 1 and
alag p <0 as follows [15]:
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where X(y4 1) (n-N+1-p), 4 € [0,K — 1], is the (g + 1)-state at
n— N+ 1— p and the signal thus characterized with K states,
from 1 to K. Here, 7 is the sampling time. Also suppose that
a signal x, is coupled with x(;_1),, starting with k = 2, by
the time derivative in continuous time. Most generally, we
thus have an expansion [9]
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Xkn = Z X(g+k)(n—N-+1-p) |
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@)

such that k = 1 gives us (1) and Xk, = Xk (,—N+1-p) holds true
for k =K.

If we now suppose that xy,, is measured as s, in the pres-
ence of noise v, having zero mean, E{v, } = 0, and arbitrary
distribution and covariance Q(i, j) = E{v;v;} for all i and j,
then the signal and measurement can be represented in state
space, using (2), with the state and observation equations as,
respectively,

Xp = AN71+pxn7N+lfp7 3
sp=Cxp, 4+ vy, 4
where the K x 1 state vector is given by

Xy = [X1nX2n ...xkn]T. 5)

The K x K triangular matrix A is specified as
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the power A’ projects the state from n — N + 1 — p to n, and
the 1 x K measurement matrix is

C=[10 ... 0]. )

Employing (3) and (4), smoothing of the model state can
now be organized as in the following.

3. UNBIASED SMOOTHING FIR FILTER

Smoothing FIR filtering of x;,, can be provided if to represent
(3) and (4) on an interval of N points fromn—N+1—p
to n+ p, p < 0, using recursively computed forward-in-time
solutions [16] as
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Xn(p) = ANXp-N41-p, (®)

Sn(p) = Cnxu-n+1-p+ Un(p), )
where
T
Xn(p) = [Xn_pXnoi—p - Xpni1—p) »  (10)
SN(p) = [sn—psnflfp Sn7N+17p]T , (11)
UN(p) = [anpvnflfpn-Vn7N+lfp]T, (12)
Ay=[ (AN-T)T (AT AnT T 13)
CAN-1+7 (AN-1+p),
Cy = : — : 7 (14)
CAl+ (Al+P),
CA?P (AP),

where (Z)| means the first row of a matrix Z.
Given (8) and (9), the smoothing FIR filtering estimate
of x1,, can be obtained as follows:

N—1+p

R = ), hi(p)sn-i (15a)
i=p

= W/(p)Sy (15b)

= W/ (p)[CnxXun+1-p+Un(p)], (15c)

where y;(p) £ hy;(N, p) is the I-degree FIR filter gain [15]
dependent on N and p [9,10] and the /-degree and 1 x N filter
gain matrix is given by

W (p) = [hp(P) hi14p)(P) - lun—15p)(P)]  (16)
that is to be specified in the minimum bias sense.

3.1 Unbiased Polynomial Gain

The unbiased smoothing FIR filtering estimate can be found
if we start with the unbiasedness condition

E{f1n_p} = E{xin}. (17)

Combining E{xi,} = (AN"""P);x,_ni1_, with the
mean estimate E{%,,_,} = W/ (p)Cyx, n4+1-p taken
from (15c¢) leads to the unbiasedness constraint

(AM1P) =W (p)Cy. (18)

where W (p) means the I-degree unbiased gain matrix.
It has been shown in [9] that (18) can alternatively be
represented as

W/ (p)V(p)=J", (19)
where J = [10 ... O]T and the p-dependent and N x (I +1)

N
Vandermonde matrix [17] is specified by

1 p P
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Because the inverse of V7 (p)V(p) exists, a solution to
(19) can be written as

Wi (p)=I"[V(p)V(p)] 'V (p). Q1)

Following [18], the component of (16) can further be rep-
resented with the degree polynomial

l .
hi(p) =Y au(p)i, (22)
j=0

where [ € [1,K],i€ [p,N—1+p],anda;;(p) = a;/(N,p) are
still unknown coefficients.

Substituting (22) to (19) and rearranging the terms lead
to a set of linear equations, having a compact matrix form of

J=D(p)X(p), (23)
where J = [1 0 O]T,
K
T
Y = [aok—1) @1k—1) --- A&-1)K-1)] > (24)
K

and a low dimensional, / X /, symmetric matrix D(p) is spec-
ified via (20) as

D(p) = V'(p)V(p)
do(p)  di(p) di(p)
di(p)  da(p) di1(p)
= . : : . (25)
d(p) dii(p) - dulp)
The component in (25) can be developed as in
(101,
N—1+p
du(p) = ), ", m=0,1,...2, (26)
i=p
1

= m—H[Bm+l(N+P)—Bm+1(P)]7 27)

where By, (x) is the Bernoulli polynomial.
An analytic solution to (23) gives us the coefficient

B M 1(p)
aj(p) = (_1)16;(71)”7

where |D| is the determinant of D(p), turning out to be p-
invariant, and M(;, 1y;(p) is the minor of D(p).

(28)
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3.2 p-Lag Polynomial Ramp Unbiased Gain

It can now be shown that the 1-degree p-shift polynomial
ramp unbiased gain existing from p to N — 1 + p is specified,
by (22) and (28), as

hii(p) = ao1(p) +an(p)i, (29)

with the coefficients

2@N=1)(N=1)+12p(N —1+p)

aoi (p) = NV —1) ;o (30)
6(N—1+2
ar(p) :—W~ 3D

In turn, the noise power gain (NPG) associated with (29)
is provided to be [4]

alo(P)
_ 2@N-1)(N-1)+12p(N—1+p)
N N(N2—1) - 32

g1(p)

We notice that, by p = 0, the gain (29) becomes that
originally derived in [19] via linear regression and rederived
in [15] in state space. This gain was further modified to be
optimal in the minimum MSE sense in [20] and, in [4], one
can find the higher degree gains along with the relevant NPG
analysis.

4. APPLICATIONS

Below we apply the solutions discussed to the problems as-
sociated with smoothing and prediction of time errors in the
local and master clocks.

4.1 The Best Linear Fit for a Two-State Clock Model

To demonstrate efficiency of (29), below we find the best
linear unbiased fit for the crystal clock time interval error
(TIE) [15]. Before doing so, we notice that linear prediction
is stated in [6, 8,21] to be optimum or near optimum for the
prediction of clock instabilities [22]. Therefore, (29) would
certainly provide the best extrapolation of errors.

The TIE of a crystal clock imbedded in the Stanford Fre-
quency Counter SR620 was measured each second during
357332 s using another SR620 for the reference cesium clock
(Symmetricom CslII) as shown in Fig. 1 as “x,+ noise”. On
the interval of N = 357333 points, the clock was identified
to have two states. For the two-state model, the ramp FIR
smoother was organized by changing a variable in (15a) and
(29) to produce the estimate at n+ p as

N—-1
il(n-&-p)\n = ;) h]i(N, p)sn,,‘, (33)
where
~ 202N —1)—6i  6p(N—1—2i)

To find the best fit, all the data must be involved. We thus
substitute N with n+ 1 and modify (33) to

¥3s730 =9-35

Time Error, in nsx102
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Figure 1: Unbiased FIR filtering and smoothing of the crystal
clock TIE.

x~n+p = Z illi(”"‘ 1,P)Sn—i7 (35)
i=0
where
~ 2n(2n+1) —6in+6p(n—2i
hi(n+1,p) = ( ) 2 ) (36)

n(n+1)(n+2)

The best linear fit appears if to smooth the data at the
initial point with p = —n as %o and filter at the current point
with p =0 as &,,. A straight line X,, passing through two these
points is provided with

X, — X
S+ (n+p) =2

n

Y mi(n+1,p)sni
i=0

Xnip = (37a)

(37b)

if we fix n and change p from —n to 0, as a variable for
hii(n+1, p) given with (36).

An evolution of the last point of the best fit provided by
the filtering estimate with p = 0 at n is represented in Fig.
1 with %,,. This estimate is obtained by (35) with n changed
from O to n = 357332. As can be observed, £, unbiasedly
tracks the mean of the “x,+ clock noise”.

The best fit is shown in Fig. 1 for all the measured points
as a straight line X3573324, having the values of Xo = 0.85 ns
with p = —357332 and X357332 = 9.35 ns with p = 0. Simi-
larly, it an be provided employing the higher degree gains. In
each of the cases, the fit will hold true only for the observed
database. It would be corrected for every new measurement
point added to the data.

4.2 An Application to the USNO Master Clock

The USNO has published on the WEB site the UTC —
UTC(USNO MC) time differences (73 points) measured
each 5 days in 2008, as issued monthly by BIPM [units are
in Modified Julian Dates (MJDs) and nanoseconds]. For this
measurement, we form the time scale starting with n = 0
(54464.0 MJD) and finishing at n = 72 (54829.0 MJID). The
measurement is shown in Fig. 1a (circles).
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Because the frequency drift in the USNO MC is negli-
gibly small and measurement is provided with negligible er-
rors, the clock can be represented with the two-state space
model, K =2,

X, = AXp_1+wy, (33)
Cx,, (39)

Sn -

in which

Xn

Xp = |: Y :| ,

The time scale of the USNO MC is corrected. There-
fore, the time error noise can be considered to be zero-
mean and white. We calculate the variance of this noise as
o2, = E{w?} providing the averaging from zero to the cur-
rent point n. The second clock state can be represented by
the time derivative of the first state and the noise variance
calculated similarly. Accordingly, we form the clock noise

vector as w, = W, wy,,]T and the covariance matrix with

A:[(l) f] Cc=[10].

U, = zen E {Wxnzwym}
" E{wyWym} Oy ’

where 0 < m < n. Note that the effect of frequency noise is
relatively small in ¥,.

Figure 2 sketches the estimates of the clock first state x,,
and second state y, provided by the optimal estimator [24]
and unbiased one (15a) with p < 0. Estimates of the first state
are illustrated in Fig. 2a. This figure reveal that the optimal
and unbiased estimates differ in average on about 15% and
that this measure can reach 50% at some points. Although
a comparison of optimal and unbiased estimates is a special
topic, there is an immediate explanation to differences with
small N. The unbiased filter provides the best fit for the noisy
process, whereas in the optimal filter this fit is adjusted by
the noise covariance function. On the one hand, the latter
cannot be ascertained correctly with a small number of mea-
surements. Therefore, the optimal filter may produce errors.
On the other hand, the unbiased filter is associated with large
horizons and may not be precise otherwise. So, we have an
inconsistency that would be reduces by increasing N.

Smoothing with p < 0 and prediction with p > 0 of time
errors is illustrated in Fig. 2b. Here, we also employ the p-
shift optimal algorithm [24] and the p-shift unbiased estimate
(15a). For the illustrative purposes, we fix three time points,
n =21, n =36, and n = 56, and allow negative p to provide
smoothing and positive p to obtain prediction. Smoothing
and prediction lines are depicted in Fig. 2b with the right
and left arrows, respectively. It can be shown that the unbi-
ased prediction is exactly that found in [22] employing the
ramp FIR filter. In [22], one can also find an unbiased pre-
diction of clock errors [23] obtained with a 5-point step and
unbiased smoothing of measurement providing the best fit.
An important observation can be made observing Fig. 2b.
It is seen that the unbiased smoothing function ranging from
n = 36 to zero fits better than the optimal one. However, this
fact does not mean that the optimal smooth is lesser accurate,
because the latter fits better the full measurement.

Finally, Fig. 2c sketches filtering estimates of the second
clock state provided with the optimal and unbiased filters.
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Figure 2: FIR estimates of the USNO MC current state via
the TIE measured during 2008 each 5 days: (a) filtering of
the first state x,, (b) prediction and smoothing of the first
state, and (c) filtering of the second state yj,.

Again we infer that both estimates are consistent, except for
the region from n = 25 to n = 45, in which the discrepancy
reaches 50%.

5. CONCLUSIONS

In this paper, we discussed unbiased smoothing FIR filter-
ing of discrete-time polynomial signals represented in state
space. The relevant gain for the FIR structure was found in
the matrix form with no requirements for noise and initial
conditions. This gain was also developed in the unique poly-
nomial form having strong engineering features. The unbi-
ased ramp gain was applied practically to the crystal clock
TIE. A high efficiency of the proposed solution is demon-
strated graphically. We finally notice that, even visually, the
best linear fit demonstrated in Fig. 1 provides us with the
best extrapolation (prediction) of future clock behaviors that
is required by the IEEE Standard 1139 [6] and can be used
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in the holdover mode in digital communications and other
networks. Estimation with p < 0 turned out to be useful to
smooth time errors and fractional frequency offsets in master
clocks as well.
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