
TENSOR CODING FOR CDMA-MIMO WIRELESS COMMUNICATION SYSTEMS

Gérard Faviera, Michele N. da Costaa,b, André L.F. de Almeidac, João Marcos T. Romanob
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ABSTRACT

In this paper, we propose a tridimensional tensor coding for
multiple-input multiple-output (MIMO) communication sys-
tems. This coding allows spreading and multiplexing the
transmitted symbols in both space and time domains, owing
the use of two allocation matrices. Assuming flat Rayleigh
fading channels, the signals received by K receive antennas
during P time blocks, composed of N symbol periods each,
with J chips per symbol, form a fourth-order tensor that satis-
fies a new constrained tensor model. A two-step alternating
least squares (ALS) algorithm is proposed for blindly and
jointly estimating the channel and the transmitted symbols.
The performance of the proposed blind receiver is evaluated
by means of computer simulations.

1. INTRODUCTION

The key idea for improving the error performance in wireless
communication systems is to jointly exploit several diversi-
ties, which means redundancy into the information-bearing
signals available at the receiver. This redundancy can be
obtained through spreading operations at the transmitter, in
space, time and/or frequency domains.

Generally speaking, space diversity results from the use
of multiple antennas at both transmitter and receiver ends,
which leads to multiple-input multiple-output (MIMO) chan-
nels. As now well known, the deployment of multiple an-
tennas in wireless systems allows improving the transmis-
sion rate and reliability over single-transmit antenna systems,
while keeping the same transmission bandwidth and power.

Space spreading results from the use of several transmit
antennas for transmitting the same symbol or data stream,
whereas time spreading consists in repeating the same sym-
bol multiplied by spreading codes, during several chip pe-
riods associated with each symbol. Time spreading can also
be obtained by transmitting the same symbols or data streams
over multiple blocks, each symbol period corresponding to a
single channel use.

On the other hand, space multiplexing that consists in
transmitting independent data streams in parallel on multiple
antennas, allows to increase the transmission rate.

Space-time (ST) coding is one of the most popular ap-
proaches relying on multi-antenna transmissions for achiev-
ing the fundamental tradeoff between error performance (in
terms of bit error rate, abbreviated as BER) and data rate (in
bits per channel use) [10].

Since the pioneering work of [9], several tensorial ap-
proaches have been developed for space-time MIMO wire-
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less communication systems with matrix ST coding and
blind receivers [1, 2, 3, 4, 5, 6, 8].

In this paper, we propose a new tensor space-time (TST)
coding. This TST coding allows spreading and multiplex-
ing the transmitted symbols in both space (transmit anten-
nas) and time (chips and blocks) domains, through the use
of a third-order code tensor admitting transmit antenna, data
stream and chip as modes, and two allocation matrices that
allocate transmit antennas and data streams to each block.
Assuming flat Rayleigh fading propagation channels, the sig-
nals received by K receive antennas during P time blocks,
composed of N symbol periods each, with J chips per sym-
bol, form a fourth-order tensor that satisfies a new con-
strained tensor model, called a PARATUCK-(2,4) model.
The proposed transmission system can be viewed as an ex-
tension of the ST transmission system of [4] that relies on a
PARATUCK-2 tensor model for the received signals. This
extension results from the introduction of a time-spreading
code. Then, a blind TST-based receiver is derived for joint
channel and symbol estimation using a two-step alternating
least squares (ALS) algorithm.

The rest of the paper is organized as follows. Section
2 presents the proposed MIMO transmission system using a
TST coding. The tensor of received signals is then derived
assuming flat Rayleigh fading propagation channels. Section
3 discusses the identifiability and uniqueness conditions for
the PARATUCK-(2,4) model of the received signals, and a
blind TST-ALS based receiver is proposed for joint channel
and symbol estimation. In Section 4, some simulation results
are provided to illustrate the performance of this receiver,
before concluding the paper in Section 5.

Notations: Scalars, column vectors, matrices and higher-
order tensors are written as lower-case (a, b,...), bold-
face lower-case (a, b,...), boldface upper-case (A, B,...),

and blackboard (A, B,...) letters, respectively. A
T, A

H,

A
∗, and A

† stand for transpose, transconjugate (Hermitian
transpose), complex conjugate, and Moore-Penrose pseudo-
inverse of A, respectively. The vector Ai· (resp. A· j) repre-

sents the ith row (resp. jth column) of A. The scalar ai1,··· ,iN
denotes the (i1, · · · , iN)-th entry of A. Di(A) is the diagonal

matrix formed with the ith row of A; IN is the identity ma-
trix of order N, 1N is the all-one column vector of dimension
(N,1), and ‖·‖F is the Frobenius norm. The operator vec(·)
forms a vector by stacking the columns of its matrix argu-
ment, whereas diag(·) forms a diagonal matrix from its vec-
tor argument. The Kronecker and Khatri-Rao (column-wise
Kronecker) products are denoted by ⊗ and ♦, respectively.
We have the following property:

vec(BCA
T) = (A⊗B)vec(C) (1)
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for A ∈ C I×R, B ∈ C J×S and C ∈ C S×R.

2. TENSOR CODING AND TENSOR MODELING
OF RECEIVED SIGNALS

2.1 Proposed TST coding

We consider a MIMO wireless communication system with
M transmit antennas and K receive antennas, and we denote
by sn,r the nth symbol of the rth data stream, each data stream
being composed of N information symbols.

The transmission is assumed to be decomposed into P
data blocks, each block being formed of N time slots. At each

time slot n of the pth block, the transceiver transmits a linear
combination of the nth symbols of the data streams deter-
mined by the stream-to-block allocation matrix Ψ ∈ RP×R,
across a set of transmit antennas fixed by the antenna-to-
block allocation matrix Φ ∈ RP×M.

Each symbol sn,r is replicated several times after multipli-
cation by a three-dimensional spreading code wm,r, j, in such

a way that the signal transmitted from the mth transmit an-

tenna during the nth time slot of the pth block, and associated

with the jth chip, is given by:

um,n,p, j =
R

∑
r=1

wm,r, j sn,r φp,m ψp,r =
R

∑
r=1

gm,r,p, j sn,r (2)

with
gm,r,p, j = wm,r, j φp,m ψp,r (3)

Remark: ψp,r = 1 means that the rth data stream is allocated

to the pth block, whereas ψp,r = 0 means that the rth data

stream is not allocated to the pth block.

2.2 Tensor modeling of received signals

In the noiseless case and assuming flat Rayleigh fading
propagation channels, the discrete-time baseband-equivalent

model for the signal received at the kth receive antenna dur-

ing the jth chip period of the nth symbol period of the pth

block, is given by:

xk,n,p, j =
M

∑
m=1

hk,m um,n,p, j =
M

∑
m=1

R

∑
r=1

gm,r,p, j hk,m sn,r (4)

The fading coefficients hk,m between transmit antennas
(m) and receive antennas (k) are assumed to be independent
and identically distributed (i.i.d.) zero-mean complex Gaus-
sian random variables. They are also assumed to be constant
during at least P blocks.

The fourth-order tensor X ∈ C K×N×P×J of received sig-
nals satisfies the constrained tensor model (3)-(4) that we will
call a PARATUCK-(2,4) model.

Remark: If we set J = 1, (2) becomes independent of j:

um,n,p =
R

∑
r=1

wm,r sn,r φp,m ψp,r (5)

which corresponds to the ST transmission system proposed
in [4] that leads to a PARATUCK-2 model for the received
signals.

Comparing (5) with (2), we can conclude that the pro-
posed TST coding allows to take a supplementary time di-
versity into account. This diversity is associated with the

third mode ( j) of the code tensor that induces an extra time-
spreading of the symbols. Note that the transmission rate for

both transceivers is given by V = R
P

log2(µ) bits per chan-
nel use, where µ is the cardinality of the information symbol
constellation.

3. BLIND TST-BASED RECEIVER

3.1 Matrix representations of the received signal tensor

Let us define X··p, j ∈ C K×N as the matrix slice of the re-

ceived signal tensor X ∈ C
K×N×P×J , obtained by slicing it

along the plane (p, j), i.e. by fixing the two last indices. Us-
ing (4) leads to the following factorization

X··p, j =HG··p, j S
T (6)

where G··p, j ∈ C
M×R can be deduced from (3)

G··p, j =Dp(Φ)W·· j Dp(Ψ) (7)

Applying property (1) to (6) and (7) gives

vec
(

X··p,j

)

= (S⊗H)vec
(

G··p,j

)

(8)

and

vec
(

G··p,j

)

=
(

Dp(Ψ)⊗Dp(Φ)
)

vec
(

W··j

)

(9)

= diag
(

vec
(

W··j

))

(

Ψ
T
p·⊗Φ

T
p·

)

(10)

which gives

vec
(

X··p,j

)

= (S⊗H)diag
(

vec
(

W··j

))(

Ψ
T
p·⊗Φ

T
p·

)

(11)

From (6), we deduce the following two matrix unfoldings
of the received signal tensor X:

X2 =

























X··1,1
...

X··P,1
...

X··1,J
...

X··P,J

























∈ C
PJK×N , X3 =



























X
T
··1,1
...

X
T
··P,1
...

X
T
··1,J
...

X
T
··P,J



























∈ C
PJN×K ,

= (IPJ ⊗H)G2S
T = (IPJ ⊗S)G3H

T

(12)

with

G2 =

























G··1,1
...

G··P,1
...

G··1,J
...

G··P,J

























∈C
PJM×R, G3 =



























G
T
··1,1
...

G
T
··P,1
...

G
T
··1,J
...

G
T
··P,J



























∈C
PJR×M.

(13)
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Using (11), we can build a third matrix unfolding of X as:

X1 = [ vec(X··1,1) · · · vec(X··P,1) · · · vec(X··P,J) ]

= (S⊗H)G1 ∈ C
NK×JP

(14)
where

G1 =[diag(vec(W··1))
(

Ψ
T♦Φ

T
)

· · ·

· · · diag(vec(W··J))
(

Ψ
T♦Φ

T
)

] ∈ C
RM×JP (15)

3.2 Identifiability and uniqueness issues

Structure of the third-order code tensor W ∈ C M×R×J

For the code tensor, we choose a third-order Vander-
monde tensor defined as:

wm,r, j = ei2πmr j/MRJ, (16)

where i2 = −1. An important reason behind this choice for
the code tensor is that this Vandermonde structure guarantees
the existence of a minimum value of the spreading length J
ensuring the identifiability in the LS sense of the channel (H)
and symbol (S) matrices when M 6=R. Due to a lack of space,
this result can not be developed in this paper.

Proceeding in the same way as in [4], it is easy to deduce
the following results.

Identifiability

Each matrix S and H is estimated by alternately solv-
ing the two equations (12) in the LS sense with respect to
one matrix conditionally to the knowledge of previously es-
timated value of the other matrix. Assuming that the sym-
bol and channel matrices are full column-rank, which implies
N ≥ R and K ≥ M, uniqueness of their conditional LS esti-
mates requires that G2 ∈ C PJM×R and G3 ∈ C PJR×M be also
full column-rank. From this double condition, we deduce the
following theorem.

Theorem 1. Assuming that S and H are full column-rank, a
necessary condition for identifiability is given by:

PJ ≥ max

(⌈

R

M
,

M

R

⌉)

. (17)

where ⌈x⌉ denotes the smallest integer number greater than
or equal to x.

This condition (17) defines a constraint that the design
parameters (P,J,M,R) must satisfy. It is interesting to no-
tice that the supplementary diversity introduced by the time-
spreading mode ( j) of the code tensor allows us to get a more
relaxed condition on the number P of data blocks that is nec-
essary for LS identifiability.

Theorem 2. Assuming that S and H are full column-rank,
and choosing a Vandermonde code tensor as defined in (16)
and the allocation matrices such that Φp· = 1

T
M and Ψp· =

1
T
R, for a given p ∈ {1, ...,P}, then S and H are identifiable

in the LS sense if M = R, for all values J ≥ 1.

This sufficient condition is identical to that of Theorem 2
in [4] obtained for J = 1. However, unlike [4], introducing
the time-spreading mode in the Vandermonde code tensor al-
lows to derive a minimum value of the spreading length J
that ensures the identifiability of S and H in the case M 6= R.

Uniqueness

Theorem 3. If ΨT♦Φ
T is full row-rank, which implies P ≥

RM, then S and H are unique up to a scalar factor, i.e.

S= α Ŝ, H=
1

α
Ĥ. (18)

This theorem is identical to theorem 3 of [4], which
means that the introduction of the time-spreading mode in
the code tensor does not modify the uniqueness property of
the tensor model. The scaling ambiguity α can be eliminated
in assuming known the first transmitted symbol s1,1.

3.3 ALS algorithm for blind joint symbol and channel
estimation

Assuming that the code tensor W and the allocation matrices
Φ and Ψ are known at the receiver, the matrices G2 and
G3 can be pre-calculated. Blind joint symbol and channel
estimation can be carried out by applying the ALS technique
for solving the two equations (12) with respect to S and H,
respectively.

4. SIMULATION RESULTS

The performance of the proposed TST coding and the as-
sociated ALS-based blind receiver is evaluated by means of
Monte Carlo simulations, in terms of BER and normalized
mean square error (NMSE) on channel estimation, defined
as

NMSEdB = 10log10





1

L

L

∑
l=1

‖H−Ĥl(∞)‖
2

F

‖H‖2
F



 , (19)

where Ĥl(∞) is the channel matrix estimated at convergence

of the lth run, and L = 2000 is the total number of Monte
Carlo runs corresponding to 2000 random wireless chan-
nels, with different symbol sequences randomly drawn from
a QPSK constellation, and different additive random noise
sequences, for each simulated channel. A different random

initialization Ĥl(0) is also used for each run. The BER is
calculated by averaging the results obtained for the R data
streams and the L Monte Carlo runs. The signal-to-noise ra-
tio (SNR) is determined by

SNR = 10log10

‖X2‖
2
F

‖V2‖
2
F

, (20)

where V2 is the unfolded matrix of the additive noise tensor.
The default values of the tuning parameters are chosen as

follows: R = 2, N = 10, J = 3, P = 4, K = M = 2.
For P = 10, M = 2 and R = 4, the allocation matrices are

chosen such as:

Φ10 =





























1 1
0 1
1 1
1 0
1 1
0 1
1 1
0 1
1 0
1 0





























, Ψ10 =





























1 1 1 1
1 0 0 1
0 1 1 1
0 1 0 0
1 0 1 0
0 1 0 1
1 1 0 1
1 0 0 1
0 1 1 1
1 1 1 0





























. (21)
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The matrices Φ4 and Ψ4 for M = 2 and R = 4 are ob-
tained by discarding the last six rows of Φ10 and Ψ10 given
in (21), respectively. In the same way, the matrix Ψ10 for
R = 2 is obtained by discarding the last two columns of Ψ10

for R = 4. Use of the default values (P = 4, R = 2) implies a
transmission rate equal to 1 bit per channel use.

In the sequel, we study the influence of the spreading
code length (J), and of the numbers of blocks (P) and data
streams (R). Then, we compare the proposed TST cod-
ing with the KRST coding of [8], and a comparison is also
made with the zero-forcing (ZF) receiver assuming a perfect
knowledge of the channel matrix.

4.1 Influence of the spreading code length

Figures 1, 2 and 3 show the channel NMSE, the BER and
the number of iterations needed for convergence, versus
SNR, for four values of the spreading code length (J ∈
{1,3,6,10}), respectively. From Figures 1 and 2, we can
conclude that an increase of J induces a significant perfor-
mance improvement in terms of both channel estimation and
symbol recovery. Moreover, the use of J > 1 implies a faster
convergence comparatively to the one obtained with J = 1
(see Figure 3). This improvement is due to the fact that the
extra time-spreading introduced by the TST coding provides
more output measurements to estimate the same number of
parameters, which makes the convergence faster. It is to be
recalled that the case J = 1 corresponds to the blind receiver
proposed in [4].

4.2 Influence of the block and data stream numbers

In order to emphasize the importance of time-spreading in
the proposed TST coding, we analyze the BER for two val-
ues of the block number (P ∈ {4,10}), of the spreading code
length (J ∈ {1,3}) and of the data stream number (R∈ {2,4})
with the allocation matrices given in (21).
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Figure 1: Influence of J: Channel NMSE versus SNR.
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Figure 2: Influence of J: BER versus SNR.
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Figure 3: Influence of J: Iteration number for convergence
versus SNR.

4.2.1 Spreading code length versus block number

In Figure 4, we note that the BER performance can be sig-
nificantly improved by increasing either the number of data
blocks or the spreading code length, since both actions in-
duce an increase of time diversity. Remark that, for R = 2,
when using J = 1, a larger number of blocks (P = 10) is
needed to obtain nearly the same BER as the one obtained
with J = 3 and P = 4. However, for R = 2, when the number
of blocks is increased from 4 to 10, the transmission rate is
reduced from 1 to 2/5 bit per channel use.

4.2.2 Spreading code length versus data stream number

For P = 10, the transmission rate is equal to 2/5 and 4/5 bit
per channel use when R = 2 and R = 4, respectively. As ex-
pected and as shown in Figure 4, the BER performance is
improved when the number of data streams is reduced from
4 to 2 (for P = 10 and J = 3), which implies fewer symbols
to be estimated with the same number of received signals.
That illustrates the tradeoff to be achieved between error per-
formance and transmission rate. It is very interesting to note
that, for P = 10, the error performance for J = 1 and R = 2 is
close to the one obtained with J = 3 and R = 4, which shows
that the use of TST coding allows to double the transmission
rate without modifying much the BER.

4.3 Comparison with the KRST coding and the non-
blind ZF receiver

The proposed blind TST-ALS based receiver is now com-
pared with the non-blind TST-ZF receiver that estimates the
symbol matrix by means of the following formula Ŝ

T
ZF =

[(IPJ ⊗H)G2]
†
X̃2.
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Figure 4: Influence of P and R: BER versus SNR.
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Figure 5: Comparison of TST-ALS and TST-ZF receivers.

For this comparison, the design parameters were set to
their default values. The BER obtained with the two algo-
rithms (ALS and ZF) is plotted on Figure 5 for J ∈ {1,3}.
From these simulation results, we can conclude that, for a
BER equal to 10−3 , the gap between the blind TST-ALS
and non-blind TST-ZF receivers is around 2.5 dB in terms of
SNR, for both values J = 1 and J = 3.

The simulation results are also compared with those ob-
tained with the blind KRST-ALS based receiver of [8], with
an identity precoding matrix.

With KRST coding, only one data stream, composed of
M symbols, is transmitted from M transmit antennas, dur-
ing each time block p of N slots, using two coding matrices
W ∈ RM×M and C ∈ RN×M . The first one allows to com-
bine M symbols onto each transmit antenna, for a given block

p, which gives the pre-coded signal vp,m =
M

∑
l=1

wm,lsp,l . The

second matrix is to spread such a combination transmitted by
each antenna over N slots, which provides a third-order ten-
sor for the transmitted signals defined as um,n,p = vp,m cn,m.

Observe that for KRST coding, the number of data
streams is forced to be equal to the number of transmit anten-
nas, while it can be chosen equal to R ≥ M with TST coding.
In addition, the use of tensor coding instead of matrix-based
pre- and post-coding presents the advantages of an extra time
spreading on chip and not needing decoding at the receiver.

Figures 2 and 3 show that the proposed TST-ALS based
receiver outperforms the KRST-ALS based receiver in terms
of BER, at the cost of a slower convergence due to the greater
number of parameters to be estimated (PNR symbols for the
TST coding and PM symbols for the KRST coding).

5. CONCLUSION

In this paper, a new tensor space-time coding has been pro-
posed for MIMO wireless communication systems. The as-
sociated transceiver is characterized by a third-order code
tensor and two allocation matrices that allow space-time
spreading-multiplexing of the transmitted symbols. The in-
troduction of one extra time diversity via the third mode
of the code tensor induces a significant performance im-
provement in terms of BER and channel estimation accuracy
comparatively to our previous solution [4], as illustrated by
means of simulation results. This extra time diversity leads
to a more relaxed condition on the number of data blocks to
be processed for ensuring LS identifiability of channel and
symbol matrices that can be jointly and blindly estimated us-
ing a two-step ALS technique. There are several perspec-
tives of this work that include extensions to frequency se-
lective and/or time varying MIMO channels [7], space-time-
frequency coding, code design and allocation matrices opti-
mization, alternative receiver algorithms, and blind receiver
when the code tensor is unknown at the receiver.
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