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ABSTRACT 
This paper proposes normalized correlation algorithm 
(NCA) for complex-domain adaptive filters with Gaussian 
inputs.  Stochastic models are presented for two types of 
impulse noise intruding adaptive filters: one in observation 
noise and another at filter input.  Performance analysis of 
the NCA is developed to derive difference equations for cal-
culating transient and steady-state convergence behavior.  
Through experiment with simulations and theoretical calcu-
lations of filter convergence for some examples, we demon-
strate high robustness of the NCA in impulsive noise envi-
ronments.  Good agreement between simulated and theoreti-
cal convergence proves the validity of the analysis. 

1.    INTRODUCTION 

Without adaptive filtering technology, virtually no recent 
advanced services could have been offered by many latest 
information and communication systems in which adaptive 
filters play a crucial role in economically realizing essential 
functions and required performance.  In fact, they are used 
in broadband internet access systems, digital mobile systems 
and digital TV broadcasting systems, to name a few. 
    Historically, the first adaptation algorithm practically ap-
plied to adaptive filters was the LMS algorithm which has 
born many “children” such as the NLMS algorithm, the sign 
algorithm (SA), the sign-sign algorithm (SSA), etc.  Among 
these algorithms, the LMS algorithm is most intensively 
studied in the literature, e.g. [1], [2].  Many implementers are 
attracted to adopt the LMS algorithm in their systems, be-
cause its performance and detailed design practices have 
already been well studied and established. 
    Although the LMS algorithm exhibits fastest convergence 
speed for a required level of steady-state error, it is known to 
be vulnerable in nature to disturbances, e.g. impulse noise 
that intrudes adaptive filtering systems [3], [4].  Two types of 
impulse noise are identified: one is present in observation 
noise and another at filter input. 
    In adaptive filters defined in the real-number domain, the 
SA [5], the signed regressor LMS algorithm (SRA) [6] and 
others [7], [8] are proven effective in combating such im-
pulse noise that seriously degrades the filter performance.  
Among them, the SSA is known to be highly robust against 
both types of impulse noise stated above [9].  However, the 
SSA has a drawback of considerably slow convergence com-
pared with the LMS algorithm.  In the complex-number do-
main, the author studied least mean modulus (LMM) algo-

rithm [10] and correlation phase algorithm (CΦA) [11] which 
are counterparts of the SA and SSA, respectively. 
    In this paper, we propose a “normalized” type adaptation 
algorithm named normalized correlation algorithm (NCA) 
defined in the complex-number domain that is expected to be 
highly robust against both the impulsive observation noise 
and impulse noise at filter input. 
    The remaining part of the paper is organized as follows.  In 
Section 2, the proposed NCA is formulated.  Section 3 pre-
sents stochastic models for two types of impulse noise that 
intrude adaptive filters, and provides simulated performance 
for the NCA in the presence of impulse noise.  In Section 4, 
we develop transient and steady-state analysis of the NCA 
with Gaussian inputs, deriving difference equations for tap 
weight misalignment for a small number as well as for a 
large number of tap weights.  Section 5 provides results of 
experiment with simulations and theoretical calculations of 
filter convergence in terms of excess mean square error that 
demonstrate the robustness of the NCA in impulsive noise 
environments and prove the validity of the analysis.  Finally, 
Section 6 concludes the paper. 
 

2.    NORMALIZED CORRELATION ALGORITHM 
 
In this section, we formulate the proposed NCA. 
    Let our complex-domain adaptive filter be of an FIR-type 
for use in identification of unknown stationary systems.  First 
we define correlation between the conjugated error signal 
e*(n) and the filter reference input at the kth tap a(n–k) as  

zk(n) = e*(n) a(n–k)    k = 0, 1, ···, N–1.      (1) 
Then, we form a correlation vector  

z(n) = [z0(n) ··· zk(n) ··· zN–1(n)]T 
= e*(n) a(n)      (2) 

with a(n) = [a(n) ··· a(n–k) ··· a(n–N+1)]T being the filter ref-
erence input vector.  Using (2), let the update equation of tap 
weight vector c(n) be given by  

c(n+1) = c(n) + αc z(n) / D[z(n)],      (3) 
where αc is the step size and the denominator on the right-
hand side is given by  

D[z(n)] = ∑ l=0 
N–1 | zl(n) |      (4) 

which is defined as a sum of moduli of the correlation (1) 
over the filter taps.  Note that D[z(n)] can alternatively be 
denoted  by | z(n) | or || z(n) ||1 (“1-norm”).  Since in (3) the 
correlation is divided by the normalizing factor (4), we name 
this adaptation algorithm normalized correlation algorithm 
(NCA). 
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Fig.1  Schematic diagram for the NCA. 

 
    In the above formulae, n is the discrete time instant, N is 
the number of tap weights and a(n) is the filter reference in-
put of a complex-valued Gaussian process, colored in general.  
The error signal is given by e(n) = ∈(n) + ν(n), ∈(n) = θH(n) 
a(n) is the excess error, θ(n) = h – c(n) is the tap weight mis-
alignment vector, h is the response vector of the unknown 
stationary system and ν(n) is the additive observation (meas-
urement) noise.  Fig. 1 is a schematic diagram of an adaptive 
filter using the NCA. 
 

3.    IMPULSE NOISE MODELS AND NCA 
 
In this section, we present impulse noise models that are 
stochastic in nature.  We identify two types of impulse noise 
that intrude adaptive filtering systems: one in observation 
noise and another at filter input.  Simulated convergence for 
the NCA in the presence of impulse noise is shown. 
 
3.1    Impulsive Observation Noise 
The impulse noise found in the additive observation noise is 
often modelled as contaminated Gaussian noise (CGN) [12] 
that is mathematically a combination of two independent 
Gaussian noise sources, i.e., 

ν(0)(n): Gaussian noise source #0 with variance σ2ν(0) 
                    and probability of occurrence pν(0), 

ν(1)(n): Gaussian noise source #1 with variance σ2ν(1) 
                    and probability of occurrence pν(1). 
Note that pν(0) + pν(1) = 1 holds.  Usually, σ2ν(1) >> σ2ν(0) and 
pν(1) < pν(0).  For “pure” Gaussian noise, pν(1)

 = 0 and σ2ν = 
σ2ν(0). 
3.2    Impulse Noise at Filter Input 
The “noisy” filter input b(n) with impulse noise added is 
given by 

b(n) = a(n) + τ(n) νa(n) [11], 
where τ(n) is an independent Bernoulli random variable that 
governs the occurrence of the impulse noise.  τ(n) takes 1 
with probability of occurrence pνa and 0 with 1 − pνa.  The 
impulse noise νa(n) itself is assumed to be a White & Gaus-
sian process independent of a(n), and its variance is σ2νa = E[| 
νa(n) | 2]/2. 
3.3    NCA in the Presence of Impulse Noise  

– Simulation Results – 
Based upon the models above, we run simulations of filter 
convergence for Example #1 below in the absence as well as 
in the presence of either type of impulse noise.  Simulation 
result is an ensemble average of square excess error 
<|∈(n)|2>/2  over 1000 independent runs of filter conver-
gence. 

   
Fig. 2  Adaptive filter convergence – NCA. 

                   (Example #1, N = 4, Cases 1, 2 & 3) 
 
     Example #1  N = 4 
                           filter reference input: AR1 Gaussian process 

              with variance σ2
a =1 (0 dB) and  

regression coefficient  η = 0.5 
                          step size: αc = 2–9 
                          Case 1: “pure” Gaussian noise  σ2

ν = 0.01 
                                       no impulse noise at filter input 
                          Case 2: CGN   σ2

ν
(0) = 0.01; pν(0) = 0.9 

                                                   σ2
ν
(1) = 10   ; pν(1) = 0.1 

                                       no impulse noise at filter input 
                          Case 3: “pure” Gaussian noise  σ2

ν = 0.01 
                                       impulse noise at filter input  
                                                   σ2νa = 1000; pνa = 0.1 
    Fig. 2 shows simulated filter convergence for Example #1.  
In Case  1 (no impulse noise) the steady-state ensemble aver-
age <|∈(∞)|2>/2 is –39.1 dB, whereas in Case 2 (CGN) this 
value is –38.6 dB, the increase in the steady-state square ex-
cess error being only half a dB.  In Case 3 (impulse noise at 
filter input), <|∈(∞)|2>/2 = –45.1 dB which is even smaller 
than that for Case 1 by 6 dB.  These simulation results dem-
onstrate the high robustness of the NCA against either type of 
impulse noise.  Filter convergence in the presence of both 
types of impulse noise will be presented in Section 5. 
 

4.    PERFORMANCE ANALYSIS 
 
In this section, transient and steady-state performance of fil-
ter convergence for the NCA is analyzed.  For ease of analy-
sis, we assume absence of impulse noise.  Due to space limi-
tations, detailed derivation process cannot be fully described, 
but only main results are summarized.  However, the validity 
of the analysis in this section is verified through experiment 
in Section 5 
 
4.1    Assumptions 
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For the analysis to be developed in this section and for the 
experiment in the next section, we make the following as-
sumptions. 
       A1: The filter reference input a(n) = aR(n) + jaI(n) is a 
zero mean complex-valued stationary Gaussian  process, 
colored in general, with variance σ2a = E[a2

R(n)] = E[a2
I(n)].  

aR(n) and aI(n) are mutually independent vectors with zero 
mean, covariance matrix Ra = E[aR(n)aT

R(n)] = E[aI(n)aT
I(n)], 

and E[aR(n−k)aI(n−κ)] = 0 for any k and κ.  Note that 
E[a(n)aH(n)] = 2 Ra and E[| a(n) | 2] = 2 σ2a. 
       A2: The additive observation noise (CGN in general) 
ν(n) = νR(n) + jνI(n) is stationary and independent of the filter 
input with variance σ2ν = E[ν2

R(n)] = E[ν2
I(n)]. 

       A3: The impulse noise at filter input is an independent 
White & Gaussian process with variance σ2νa and probability 
of occurrence pνa. 
       A4: The filter reference input a(n) and the tap weights 
c(n) are mutually independent. (Independence Assumption) 
       A5: The error e(n) and the filter input a(n) are jointly 
Gaussian distributed [5], [6].  
    Assumption A4 is frequently used in many papers for ease 
of analysis.   
4.2    Difference Equations for Tap Weight Misalignment 
From (3) we derive the following update equation for the tap 
weight misalignment vector θ(n). 

θ(n+1) = θ(n) − αc e*(n) / | e(n) | × a(n) /D[a(n)],    (5) 
where D[a(n)] = ∑ l=0 

N–1 | a(n–l) |.  Then, from (5), under the 
assumptions above we derive a set of difference equations for 
the mean vector m(n) = E[θ(n)] and the second-order mo-
ment matrix K(n) = E[θ(n)θH(n)]: 

m(n+1) = m(n) − αc p(n)    (6) 
K(n+1) = K(n) − αc [V(n) + VH(n)] + α2

c Ta,    (7) 
where p(n) = E{e*(n)/| e(n) |×a(n)/D[a(n)]}, V(n) = E{e*(n)/| 
e(n) |×a(n)/D[a(n)]×θH(n)} and Ta = E[a(n)aH(n)/D[a(n)]2].  
    As a measure of how accurately the adaptive filter identi-
fies the unknown system, we often use excess mean square 
error (EMSE) as defined by  

ε(n) = E[|∈(n) | 2]/2 
     = tr[Ra K(n)] 

with tr( · ) being trace of a matrix. 
    Now, let us calculate the following conditional expectation. 

E{e*(n)/| e(n) |×a(n) /D[a(n)]│θ(n)} 
= (2/π)1/2∫ 0 ∞E[e*(n)/| e(n) |×a(n) exp{–(u2/2)D[a(n)]2}]du. 

For further calculation, we approximate D[a(n)]2 by || a(n) ||2 
= aH(n)a(n) as follows. 

D[a(n)]2 ≅ β 2 aH(n)a(n),    (8) 
where detailed calculation of a coefficient β 2 is given in 
APPENDIX.  For example, when N = 4 and the filter input 
is an AR1 Gaussian process with regression coefficient η = 
0.5, we calculate β 2  ≅ 3.444912.  Using (8), we rewrite  

      E{e*(n)/| e(n) |×a(n) / D[a(n)]│θ(n)} 
≅ (2/π)1/2∫ 0 ∞E{e*(n)/| e(n) |×a(n)exp[–(u2/2)β 2aH(n)a(n)]}du. 
Recognizing that a(n) is a complex-valued Gaussian random 
vector and applying the method in [13] under Assumption A5, 
we finally calculate  

E{e*(n)/| e(n) |×a(n) /D[a(n)]│θ(n)} 
≅ (2/π)1/2∫ 0 ∞ (π/2)1/2 σ–1

D(u, n) | A(u) |–1D(u) du θ(n), 

where σ2
D(u, n) = tr[D(u)K(n)] + σ2ν, D(u) = A–1(u)Ra, A(u) 

= I + u2β 2Ra and | A(u) | is the determinant of the matrix 
A(u).   
    Then, we find in (6) and (7) 

p(n) = W(n) m(n), 
V(n) = W(n) K(n) 

with 
W(n) ≅ ∫ 0 ∞ σ–1

D(u, n) | A(u) |–1D(u) du.    (9) 
Next, in (7) we calculate in a similar manner  

Ta ≅ 2 ∫ 0 ∞ u | A(u) |–1D(u) du.    (10) 
    Using (9) and (10) in (6) and (7), we can iteratively calcu-
late filter convergence in terms of EMSE. 
4.3    Analysis for a Large Number of Tap Weights 
Since W(n) in (9) does depend on the value of K(n), we need 
to perform numerical integration with respect to u at each n.  
This requires a large amount of computation during adapta-
tion calculation, particularly for a large N.  If N is very large, 
say N>20, we can approximately calculate W(n) as follows. 
    For N>>1, expectation for e(n) and a(n) can be calculated 
separately.  Thus,  

E{e*(n)/| e(n) |×a(n) /D[a(n)]│θ(n)} 
≈ E[e*(n)/| e(n) |×a(n)│θ(n)] / E{D[a(n)]} 

≈ (π/2)1/2 σ–1
e(n) Ra θ(n) / E[∑ l=0 

N–1 | a(n–l) |] 
≈ (π/2)1/2 σ–1

e(n) / [(π/2)1/2σaN]×Ra θ(n) 
from which  

W(n) ≈  Ra / [σe(n) σaN ]    (11) 
results.  Here, σ2

e(n) = ε(n) + σ2ν is the error variance. 
4.4    Steady-State Solution 
We assume that the filter converges as n → ∞.  Then, eq. (7) 
yields a matrix equation  

W(∞)K(∞) + K(∞)W(∞) = αc Ta, 
whence we solve, noting that K(∞), W(∞) and Ta are sym-
metric matrices,  

K(∞) = (αc/2) W–1(∞)Ta. 
Since W(∞) depends on the value of K(∞), we can solve 
K(∞) only iteratively with an appropriate initial guess.  With 
K(∞) solved, we easily obtain the steady-state EMSE ε(∞).  
If we use (11), we find  

ε(∞) ≈ (αc/2) σaN tr(Ta) σe(∞). 
Since this is a quadratic equation, we can easily solve for 
ε(∞) analytically and explicitly. 
 

5.    EXPERIMENT 
 
In this section, experiment is carried out with simulations and 
theoretical calculations of adaptive filter convergence for the 
NCA.  The effectiveness of the proposed algorithm as well as 
the validity of the analysis in Section 4 are demonstrated. 
    Results of experiment are presented where we compare 
simulated and theoretically calculated filter convergence in 
the absence of impulse noise.  The theoretical convergence is 
calculated in terms of EMSE using the difference equations 
developed in the previous section.  We also present simula-
tion results in the presence of both types of impulse noise. 
    Three examples are carefully prepared as given below, 
where Example #2 is basically the same as Example #1 in 
Subsection 3.3 
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     Example #2  N = 4 
                           filter reference input: AR1 Gaussian process 

               with variance σ2
a =1 (0 dB) and  

regression coefficient  η = 0.5 
                          step size: αc = 2–9 
                          Case 1: “pure” Gaussian noise  σ2

ν = 0.01 
                                       no impulse noise at filter input 
                          Case 4: CGN   σ2

ν
(0) = 0.01; pν(0) = 0.9 

                                                   σ2
ν
(1) = 10   ; pν(1) = 0.1 

                                       impulse noise at filter input  
                                                   σ2νa = 1000; pνa = 0.1 
     Example #3  N = 2 
                           filter reference input: AR1 Gaussian process 

               with variance σ2
a =1 (0 dB) and  

regression coefficient  η = 0 
                          step size: αc = 2–8 
                          Case 1: “pure” Gaussian noise  σ2

ν = 0.001 
                                       no impulse noise at filter input 
                          Case 4: CGN   σ2

ν
(0) = 0.001; pν(0) = 0.9 

                                                   σ2
ν
(1) = 0.1    ; pν(1) = 0.1 

                                       impulse noise at filter input  
                                                   σ2νa = 100; pνa = 0.1 
     Example #4  N = 32 
                           filter reference input: AR1 Gaussian process 

               with variance σ2
a =1 (0 dB) and  

regression coefficient  η = 0.9 
                          step size: αc = 2–6 
                          Case 1: “pure” Gaussian noise  σ2

ν = 1 
                                       no impulse noise at filter input 
                          Case 4: CGN   σ2

ν
(0) = 1      ; pν(0) = 0.95 

                                                   σ2
ν
(1) = 100 ; pν(1) = 0.05 

                                       impulse noise at filter input  
                                                   σ2νa = 100; pνa = 0.05 
    Results of experiment for Examples #2, #3 and #4 are 
shown in Figs. 3, 4 and 5, respectively.  For Example #4 
(large N), W(n) in (11) is used.  In the figures we observe 
good agreement between simulated and theoretically calcu-
lated convergence (Case 1) that proves the validity of the 
analysis in Section 4.  In Case 4, simulated steady-state 
squared excess error <|∈(∞)|2>/2 is again smaller than that in 
Case 1, demonstrating the robustness of the NCA against 
both types of impulse noise. 
 

6.    CONCLUSION 
 
In this paper, we have derived normalized correlation algo-
rithm (NCA) to be applied to complex-domain adaptive fil-
ters with Gaussian inputs for robust filtering in severe impul-
sive noise environments.  Stochastic models for two types of 
impulsive noise have been presented: one for impulsive ob-
servation noise and another for impulse noise at filter input. 
    We have developed rigorous analysis of the NCA for a 
small number of tap weights N as well as approximate analy-
sis for a large N for calculating transient and steady-state 
convergence behavior in terms of EMSE. 
 
 

   
Fig. 3  Adaptive filter convergence – NCA. 

          (Example #2, N = 4, Cases 1 & 4) 

   
Fig. 4  Adaptive filter convergence – NCA. 

                         (Example #3, N = 2, Cases 1 & 4) 

   
Fig. 5  Adaptive filter convergence – NCA. 

         (Example #4, N = 32, Cases 1 & 4) 
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    Through experiment with simulations, we have demon-
strated that the NCA is highly robust in the presence of both 
types of impulse noise. 
    In the absence of impulse noise, good agreement between 
simulations and theoretical calculations has proven the valid-
ity of the analysis.  Theoretical analysis of the NCA in the 
presence of both types of impulse noise is for further study.  
Also left as a future work is improvement in the filter con-
vergence speed for the NCA, while preserving its robustness 
in impulsive noise environments. 
 

APPENDIX 
 
Calculation of β 2 for Approximation D[a(n)]2 ≅ β 2 aH(n)a(n) 
The simplest way to find β 2 is to take expectation of both 
sides of the above equation, i.e.,  

E{[∑ l=0 
N–1 | a(n–l) |]2} ≅ β 2 E[∑ l=0 

N–1 | a(n–l) |2].    (12) 
First, the left-hand side of (12) can be written as  

E[∑ l=0 
N–1∑ λ=0 

N–1 | a(n–l) | | a(n–λ) |] 
= E[∑ l=0 

N–1 | a(n–l) |2] + E[∑ l=0 
N–1∑ λ≠ l

 | a(n–l) | | a(n–λ) |] 
= ∑ l=0 

N–1E[| a(n–l) |2]+2∑ l=0 
N–2∑ λ>l

 E[| a(n–l) a(n–λ) |]. 
Since ∑ l=0 

N–1E[| a(n–l) |2] = 2σ2
aN, we find  

β 2 ≅ 1 + N –1∑ l=0 
N–2∑ λ>l

 E[| a(n–l) a(n–λ) |] / σ2
a. 

    Now, | a(n–l) a(n–λ) | is a modulus of product of two cor-
related complex-valued Gaussian random variables.  The 
author derived a probability density function of this modulus, 
naming its distribution Gaussian Product Modulus Distribu-
tion [14].  Referring to [14, 3.1(b)], we calculate  

E[| a(n–l) a(n–λ) |] / σ2
a = L(sin2αlλ), 

where sinαlλ = Ralλ /σ2
a and for 0≤ m<1 we define a function  

L(m) = (1– m)2 ∫ 0 π /2 (1+2msin2φ)(1– msin2φ)–5/2 dφ 
which belongs to a family of Elliptic Integrals. 
    For details of calculation, let us define ξ = ξR+jξI = a(n–
l)/σa, η = ηR+jηI = a(n–λ)/σa and E(ξR ηR) = E(ξI ηI) = sinα.  
Referring to [14], we find  

E(|ξ η|) = 8 cos4α π–1∫ 0 π dφ ∫ 0 ∞ du u2/(u2+1–2usinαcosφ)3. 
Here, we integrate  

∫ 0 ∞ du u2/(u2+1–2u sinαcosφ)3 = (1/8)(1–sin2αcos2φ)–3/2 

×[π/2+arcsin(sinαcosφ)+ sinαcosφ(1–sin2αcos2φ)1/2]  
+(1/4)sinαcosφ  

+(1/8)sin2αcos2φ(1–sin2αcos2φ)–5/2 
×[3π/2+3arcsin(sinαcosφ)+3sinαcosφ(1–sin2αcos2φ)1/2  

                                                +2sinαcosφ(1–sin2αcos2φ)3/2]. 
Recognizing that for a function f(cosφ) 

∫ 0 π f(cosφ) dφ = ∫ 0 π/2 [f(cosφ)+f(–cosφ)]dφ  
holds, we calculate  

E(|ξ η|) = cos4α ∫ 0 π/2 
[(1–sin2αcos2φ)–3/2+3sin2αcos2φ(1–sin2αcos2φ)–5/2] dφ  

= L(sin2α). 
    Then, we finally obtain  

β 2 ≅ 1 + N –1∑ l=0 
N–2∑ λ=l+1 

N–1
 L(sin2αlλ). 

Note that L(0) = π / 2 and L(m) → 2 as m → 1. 
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