
JOINT ESTIMATION OF SOUND SOURCE LOCATION AND NOISE COVARIANCE
IN SPATIALLY COLORED NOISE

Futoshi Asano and Hideki Asoh

Intelligent systems R. I., AIST
Central 2, 1-1-1 Umezono Tsukuba 305-8568, Japan

email: f.asano@aist.go.jp
web://staff.aist.go.jp/f.asano/

ABSTRACT
In this paper, sound source localization in spatially colored
noise such as room reverberation is discussed. Two itera-
tive algorithms for jointly estimating signal source parame-
ters and noise covariance are proposed. Experimental results
show that the estimation of noise covariance improves the
spatial resolution of source localization.

1. INTRODUCTION

In the source localization problem, the additive noise in the
environment is often assumed to be spatially white for the
sake of convenience in deriving an algorithm. In the case
of spatially colored noise, a noise-whitening technique such
as the generalized eigenvalue decomposition (GEVD)[1]
was proposed as briefly reviewed in Section 3. For noise-
whitening, information about the noise such as covariance
matrix must be available. In speech and audio applications,
however, the noise sometimes consists of room reverbera-
tion and thus cannot be observed independently. In this pa-
per, two algorithms for jointly estimating source location
and noise covariance are proposed. The first one is the
maximum-likelihood (ML) approach, while the second one
is the Bayesian approach. The experimental results show that
the spatial resolution of source localization was improved by
the proposed methods as compared to the method using a
spatially white assumption.

2. MODEL OF SIGNAL AND NOISE

The frequency-domain observation vector is defined as zk =
[Z1(ω,k), · · · ,ZM(ω,k)]T , where Zm(ω,k) is the short-time
Fourier transform (STFT) of the mth sensor input at the time
frame k. The observation vector zk can be modeled as

zk =
N

∑
i=1

a(θi)si,k +vk = A(θ)sk +vk (1)

where sk = [s1, · · · ,sN ]T and vk are the source and noise vec-
tor, respectively. The noise vk is assumed to be Gaussian
with the distribution N (0,K) where K = E[vkvH

k ]. The
vector a(θi) is the array manifold vector for the ith source
located in the direction θi. A(θ) = [a(θ1), · · · ,a(θN)] and
θ = [θ1, · · · ,θN ]T .

Assuming that sk and vk are uncorrelated, the correlation
matrix of the observation can be modeled as

R = E[zkzH
k ] = A(θ)ΓAH(θ)+K (2)

where Γ = E[sksH
k ]. Generally, sk and vk may have some

correlation when vk consists of room reverberation. For the
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Figure 1: Eigenvalues and the MUSIC spectrum using
SEVD.

observation zk obtained by STFT as employed in this paper,
however, the coherency between the direct sound and the re-
verberation consisting of replicas of source signal in the pre-
vious frames is usually low. A typical example is the direct
sound of a consonant in speech overlapped by the reverbera-
tion of a vowel in the previous frames. In this paper, thus, sk
and vk are assumed to be uncorrelated for the sake of ease in
deriving an algorithm.

3. ROLE OF NOISE COVARIANCE IN SOURCE
LOCALIZATION

In this section, it is briefly shown how information in the
noise covariance affects source localization using the MU-
SIC estimator as an example. The spatial spectrum of the
MUSIC estimator is given by P(ϕ) = 1

‖aH (ϕ)EN‖2
, where

aH(ϕ) denotes the array manifold vector for aribitrary di-
rection ϕ . The matrix EN = [eN+1, · · · ,eM] consists of the
eigenvector of R corresponding to the noise subspace. The
standard eigenvalue decomposition (SEVD) is usually used
under the assumption that the noise is spatially white.

Fig. 1 shows an example of the eigenvalue distribution
and the MUSIC spectrum. For obtaining the observation,
the impulse responses for two closely located sound sources
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Figure 2: Eigenvalues and MUSIC spectrum using GEVD
with the known noise covariance.

(0◦,20◦) were measured in a meeting room with the rever-
beration time of 0.5 s and were convolved with a source sig-
nal (speech). The powers of the two sound sources were the
same. A microphone array with eight elements mounted on
the head of a robot (HRP-2) was used. The spacing be-
tween microphones is 50-80 mm (not uniformly spaced.)
The length of the frame in STFT is 32 ms (512 points). The
length of data for calculating covariance matrix is 2 s (250
frames with 128-point frame shift). The data at 1500 Hz were
used. It can be seen that the two peaks that should appear at
(0◦,20◦) were merged into a single peak.

For colored noise, GEVD that satisfies

Rei = λiKei (3)

can be used[1] instead of SEVD. The difference between
SEVD and GEVD is that the noise-whitening process is in-
cluded in eigenvalue decomposition. Fig. 2 shows the case
when GEVD is employed. For using GEVD, the noise co-
variance K must be known. For this example, the impulse
responses were divided into the direct sound and reflection,
and then the responses corresponding to the reflection were
convolved with the source signal to obtain the noise observa-
tion vk separately. From Fig. 2(a), two dominant eigenvalues
corresponding to the number of sources N = 2 can be seen
while the other eigenvalues are almost flat. This is the effect
of noise whitening by GEVD. In Fig. 2(b), two peaks appear
at (0◦,20◦). From these, it can be seen that the spatial reso-
lution of sound localization is improved by the information
of noise covariance. In a real application, however, the noise
vk cannot be observed separately in a case such as noise con-
sisting of room reverberation.

4. ESTIMATION OF NOISE COVARIANCE

In this section, the conditional distribution and expectation
of the noise covariance K is derived [2].

It is assumed that the covariance matrix K has an inverse-
Wishart distribution, a conjugate prior distribution when vk

is Gaussian, i.e.,

p(K) ∝ det(K)−(ν0+M+1) exp
{
−tr(C0K−1)

}
(4)

where C0 is the prior covariance. ν0 is the virtual sample
size for obtaining C0. The conditional distribution of K is
also the following inverse-Wishart distribution:

p(K|Z,S,θ) ∝ p(K)p(Z|θ ,S,K)

∝ det(K)−(ν0+K+M+1) exp
{
−tr([C0 +C1]K−1)

}
(5)

where Z = [z1, · · · ,zK ] and S = [s1, · · · ,sK ]. The matrix C1
is defined as

C1 =
K

∑
k=1

[zk−A(θ)sk][zk−A(θ)sk]H (6)

The likelihood p(Z|θ ,S,K) is given by

p(Z|θ ,S,K) ∝ det(K)−K ·

exp

(
−

K

∑
k=1

[zk−A(θ)sk]
H K−1 [zk−A(θ)sk]

)
(7)

From (5), the conditional expectation of K is

E[K|Z,S,θ ] =
1

ν0 +K−M−1
(C0 +C1)

= α0

(
1

ν0−M−1
C0

)
+α1

(
1
K

C1

)
(8)

where (1/K)C1 is the sample estimate of K. α0 = (ν0−M−
1)/(ν0 + K−M− 1) and α1 = K/(ν0 + K−M− 1) can be
interpreted as weights.

5. METHOD I: ML-BASED ALGORITHM

In this section, an algorithm for jointly estimating θ and K,
based on the ML method, is proposed.

5.1 Maximum-likelihood estimation of θ
First, the ML estimator for θ on the assumption that K is
given is briefly reviewed [3, 4]. The ML estimate of the sig-
nal sk is given by

ŝk =
[
AH(θ)K−1A(θ)

]−1
AH(θ)K−1zk (9)

By substituting (9) into (7), the log likelihood in which the
unnecessary terms are omitted is obtained as

LL(θ) = −
K

∑
k=1

[G(θ)zk]HK−1[G(θ)zk] (10)

= −tr
[
G(θ)CzGH(θ)K−1] (11)

where

G(θ) = I−A(θ)
[
AH(θ)K−1A(θ)

]−1
AH(θ)K−1 (12)

and

Cz =
K

∑
k=1

zkzH
k (13)

The ML estimate of the source location is given by

θ̂ = argmax
θ

LL(θ) (14)
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5.2 Iterative algorithm
In this section, an iterative algorithm for the joint estimation
of θ and K is proposed.
1. Set K(1) = σ2I as the initial value.
2. Calculate the log likelihood using (11) and (12) as

LL(θ) =−tr
[
G(θ)CzGH(θ)(K(p))−1

]
(15)

G(θ) = I−A(θ)
[
AH(θ)(K(p))−1A(θ)

]−1

·AH(θ)(K(p))−1 (16)

3. Obtain the ML estimate of the location θ (p+1) using (14)
as

θ (p+1) = argmax
θ

LL(θ) (17)

4. Obtain the sample estimate of the noise covariance using
(6) and (16) as

1
K

C(p+1)
1 =

1
K

G(θ (p+1))CzGH(θ (p+1)) (18)

5. Update the conditional expactation of the noise covari-
ance using (8) as

K(p+1) = α0

(
1

ν0−M−1
C0

)
+α1

(
1
K

C(p+1)
1

)
(19)

6. Go back to Step 2 with p← p+1 where p is the iteration
index.
This method is somewhat similar to the EM algorithm in

which the noise vk is treated as the latent variable. However,
the conditional expectation of the log likelihood with respect
to vk cannot be easily derived. Thus, the ML estimate of
θ is obtained on the assumption that K is given. Next, the
conditional expectation of K is calculated, and this process
is iterated.

6. METHOD II: ALGORITHM USING GIBBS
SAMPLER

In this section, a Bayesian approach for jointly estimating θ ,
S and K using the Gibbs sampler (e.g.,[2]) is proposed.

6.1 Conditional distribution of sk

The conditional distribution of sk is given by

p(sk|Z,θ , S̃k,K) ∝ p(sk)p(Z|θ ,S,K) (20)

where
S̃k = [s1, · · · ,sk−1,sk+1, · · · ,sK ] (21)

Assuming that the prior p(sk) is the Gaussian distribution
N (0,Φ0), the conditional distribution (20) is also the fol-
lowing Gaussian distribution:

p(sk|Z,θ , S̃k,K) ∝ exp
[
−sH

k
(
AHK−1A+Φ−1

0
)
sk

+sH
k AHK−1zk +zH

k K−1Ask
]

= N (µk,Φ) (22)

where

Φ =
(
AHK−1A+Φ−1

0
)−1

(23)

µk = ΦAHK−1zk (24)

6.2 Conditional distribution of θ
Since A(θ) is a nonlinear function of θ , it is difficult to ob-
tain samples of θ directly from its conditional distribution.
In this case, the Metropolis algorithm can be used[2, 5]. In
the Metropolis algorithm, a sample θ ∗ is obtained from a
proposal distribution J(θ ∗|θ (p)) where θ (p) is the previous
sample. In this paper, the following uniform distribution is
employed:

J(θ ∗|θ (p)) = U (θ (p)−δ ,θ (p) +δ ) (25)

where δ is an appropriate constant vector. The new sample
θ ∗ is accepted when the acceptance ratio r defined by (26)
exceeds a threshold rthr.

r =
p(Z|θ ∗,S(p+1),K(p+1))

p(Z|θ (p),S(p+1),K(p+1))

p(θ ∗)
p(θ (p))

(26)

6.3 Iterative algorithm

1. Set K(1) and θ (1) as the initial value.
2. Sample s(p+1)

k ∼ p(sk|Z,θ (p), S̃(p)
k ,K(p)) = N (µk,Φ)

where

Φ =
(
AH(θ (p))(K(p))−1A(θ (p))+Φ−1

0

)−1
(27)

µk = ΦAH(θ (p))(K(p))−1zk (28)

3. Sample K(p+1) ∼ p(K|Z,S(p+1),θ (p)) using (5) and (6).
4. Sample θ ∗ ∼ J(θ ∗|θ (p)) using (25) and determine the

new sample as

θ (p+1) =
{

θ ∗ r > rthr

θ (p) otherwise
(29)

5. Go back to step 2 with p← p+1

7. EXPERIMENT

The same example as used in Section 3 was used in this ex-
periment. The conditions of the simulation and the analysis
are the same as those in Section 3. As the prior noise covari-
ance, C0 = σ2

0 I was employed.
First, Method I was evaluated. Fig. 3 shows the estimated

source directions. It can be seen that the estimated directions
approach the true directions indicated by the dash-dot lines
as the number of iteration increases.

Fig. 4 shows the log likelihood LL(θ) for p = 1 and
p = 8. When p = 1, the spatially white covariance (K(p) =
σ2I) is used. For the spatially white case, the distribution is
sharp with maximum at (8◦,9◦). For the estimated covari-
ance (p = 8), the distribution is broad with a maximum at
(1◦,18◦) that is closer to the true direction (0◦,20◦). The
probable reason for the broad distribution is that the esti-
mated covariance K(p) is closer to the true covariance, re-
sulting in an increased likelihood.

In Fig. 5 , Method I was applied to the wide frequency
range of [1000,2500] Hz with 49 frequency bins. Fig. 5(a)
shows the estimation error ε(p) = (1/N)∑N

i=1 |θ
(p)
i − θ true

i |.
“White” and “Estimated” correspond to the case of p = 1
and p = 8, respectively. Fig. 5(b) shows an improvement in
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Figure 3: Source directions estimated by Method I.
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Figure 5: Estimation error for different frequencies.

estimation error, ε(8)− ε(1). It can be seen that the estima-
tion precision was improved by the proposed method (p = 8)
at several frequency bins in the middle frequencies. In the
higher frequency range, the estimation was precise even for
the initial guess (p = 1) with the spatially white assumption.
This is mainly due to the physical reason that the spatial res-
olution is higher for shorter wavelengths. For the lower fre-
quency range, on the other hand, the initial guess was poor
at some frequency bins, resulting in a small improvement by
the iteration.

In Fig. 6, the estimated covariance was applied to the
GEVD-MUSIC method. In the proposed method, the source
direction and the noise covariance are jointly estimated.
Therefore, there is no need to use GEVD-MUSIC for es-
timating the source directions. By comparing Fig. 6 with
Fig. 2, however, the precision of estimating noise covariance
can be known. The eigenvalue distribution and the MUSIC
spectrum shown in Fig. 2, which were obtained by using the
true noise covariance, were recovered to some extent by us-
ing the estimated noise covariance.

Next, Method II was evaluated. The initial value of θ (p)

was set to (−20◦,60◦). Fig. 7 shows the variation of sample
θ (p) during the iteration. It can be seen that θ (p) quickly
approachs the true direction. The mean value of samples,
which is the Monte Carlo approximation of the conditional
expectation of θ , is also shown in Fig. 7.
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Figure 6: Eigenvalues and MUSIC spectrum using GEVD
with the estimated noise covariance.

8. CONCLUSION

In this paper, two algorithms for the joint estimation of sig-
nal source parameters and noise covariance were proposed.
From the results of the experiment, the spatial resolution for
the colored noise environment was improved compared with
the method that assumes spatially white-noise.
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Figure 7: Samples of θ1 and θ2 obtained by using Method II.
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