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ABSTRACT

This paper addresses the multiplier free implementation of
the Generalized Comb Filters (GCF) based on Chebyshev
polynomials. In particular, we focus on GCF rational transfer
function implementation for any decimation factor. Our ap-
proach ensures the perfect pole-zero cancelation for any GCF
filter order. The closed form equation for the implementation
complexity in terms of the numbers of two-input adders and
shifts is also provided.

1. INTRODUCTION

The cascaded-integrator-comb (CIC) filter, proposed by
Hogenauer [1], is the simplest multiplierless decimation fil-
ter, which is usually used at the first decimation stage. The
filter must have a low passband droop and a high attenuation
within the folding bands (bands around the comb zeros). Un-
fortunately, CIC filter has a high passband droop and a low
attenuation in the folding bands. There have been proposed
different methods for compensating the passband droop as
well as for improving the stopband characteristic, for exam-
ple [2-6].

Recently, a generalization of the CIC filter (GCF) is pro-
posed by Laddomada [6] to improve the attenuation as well
as to span the folding bands. Consequently GCFs filters have
a high quantization noise rejection within the folding bands.

The rational transfer function of the GCF filter is ex-
pressed as [6]

HGCFN
(z) =AN

(

1− z−D

1− z−1

)p m

∏
n=1

1− 2cos(Dαn)z
−D + z−2D

1− 2cos(αn)z−1 + z−2
,

(1)
where AN and D are the normalization constant and the dec-
imation factor, respectively. The rotation parameters αn,
n = 1, . . . ,m, are chosen such that the minimum attenuation
within folding bands is maximized [6]. A useful value for αn

is qnπ/νD, where ν is a positive integer factor and qn is a
real value in the range [−1,1], [6]. Consequently, |αn|< 1.

The order of the CGF is given by N = 2m+ p, with

p =

{

1, N odd;

0, N even.
(2)

Unlike the CIC filter, the complexity of the CGF deci-
mation filter is high because of the presence of multipliers in
both nominator and denominator of (1). Yet another problem
is the pole-zero cancelation of (1) when the coefficients have
a finite precision.

In order to overcome this problem, in [7] the authors pro-
posed an efficient multiplierless architecture for the GCF fil-
ters based on trigonometric identities which leads to the per-
fect pole-zero cancelation of the multiplierless transfer func-
tion (1).

In this paper we consider a general approach to solve the
same problem, i.e., the multiplierless rational GCF transfer
function implementation using the Chebychev polynomials.
The motivation to use Chebyshev polynomials is twofold:
First we can easily generalize the procedure for any given
GCF order, and second, we can obtain the closed form equa-
tion for the required number of adders and shifts.

The rest of the paper is organized as follows. Next Sec-
tion gives a brief overview of Chebyshev polynomials. The
proposed approach is introduced in Section 3. In Section 4,
we present the implementation complexity in terms of num-
ber of two-input adders and number of shifts. Discussion and
results are presented in last section.

2. OVERVIEW OF CHEBYSHEV POLYNOMIALS

This section defines Chebychev polynomials and introduces
an important property, which is used in Section 3 to imple-
ment generalized comb filter in a multiplierless form.

Formally, Chebyshev polynomial of order D, CD(x), can
be defined by the following recursive equation:

CD(x) = 2xCD−1(x)−CD−2(x), (3)

where C1(x) = x and C0(x) = 0. Table 1 presents Chebyshev
polynomials for D = 0, . . . ,10. Observe that x is a common
factor of CD(x) when D is odd.

D CD(x)

0 1
1 x

2 2x2 − 1

3 x(4x2 − 3)
4 8x4 − 8x2 + 1

5 x(16x4 − 20x2 + 5)
6 32x6 − 48x4 + 18x2 − 1

7 x(64x6 − 112x4+ 56x2 − 7)
8 128x8 − 256x6+ 160x4− 32x2 + 1

9 x(256x8 − 576x6+ 432x4− 120x2+ 9)
10 512x10 − 1280x8+ 1120x6− 400x4+ 50x2 − 1

Table 1: Examples of Chebyshev polynomials.
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An alternative form to define Chebyshev polynomials is
[8]

CD(x) =

{

cos(Dcos−1(x)), |x| ≤ 1;

cosh(Dcosh−1(x)), |x|> 1.
(4)

We now consider how to efficiently compute CD(x). Our
goal is to express the higher order Chebyshev polynomials in
terms of second order polynomials. To this end, consider the
following relation [8]:

Cn+m(x) = 2Cn(x)Cm(x)−Cn−m(x), n ≥ m, (5)

Using m = n in (5), we obtain

C2n(x) = 2C2
n(x)− 1. (6)

In a similar way, replacing m with n− 1 in (5), we have

C2n−1(x) = x

(

2
Cn(x)Cn−1(x)

x
− 1

)

. (7)

Note that the product Cn(x)Cn−1(x) in (7) is divided by x.
If n is even, then x is a common factor of Cn−1(x). Similarly,
if n is odd, Cn(x) will have a common factor x. Therefore
in both cases the product Cn(x)Cn−1(x) will cancel x in the
denominator.

Figure 1 illustrates the implementation of CD(x) based on
equations (6) and (7).

+
C2n(x)

2 C2
n(x)

−

(a) D even (D = 2n).

+

C2n−1(x)

x Cn−1(x)Cn(x)/x

2

−

(b) D odd (D = 2n−1).

Figure 1: Efficient implementation of CD(x).

We can express in a simpler way any Chebyshev polyno-
mial, applying recursively (6) and (7), as shown in the fol-
lowing example.

Considering D = 7, we have D = 2n− 1 = 7 resulting in
n = 4. From (7), C7(x) is expressed as

C7(x) = x

(

2C4(x)C3(x)/x− 1
)

. (8)

Using (6), we have

C4(x) = 2C2
2(x)− 1. (9)

Replacing (9) into (8), we obtain

C7(x) = x
(

2
(

2C2
2(x)− 1

)

C3(x)/x− 1
)

. (10)

Similarly, using (7), we have

C3(x) = x
(

2C2(x)− 1
)

. (11)

Substituting (11) into (10), we express (8) in terms of
C2(x)

C7(x) = x
(

2
(

2C2
2(x)− 1

)

(2C2(x)− 1)− 1
)

. (12)

Finally, the desired result is obtained by replacing C2(x)
from Table 1 into (12)

C7(x) = x
(

2
(

2
(

2x2 − 1
)2
− 1

)

(

2
(

2x2 − 1
)

− 1
)

− 1
)

.

(13)
Figure 2 illustrates the implementation of C7(x) based on

(13). We have indicated the polynomials C2(x), C3(x)/x, and
C4(x) with dashed lines. The benefit of this presentation is
that all coefficients are equal to two.

3. GCF AND CHEBYSHEV POLYNOMIALS

This section relates the GCF decimation filter and the Cheby-
shev polynomials.

Denote the cosine term in the denominator of (1) as

xn = cos(αn). (14)

Using (4), the cosine term (14) can be rewritten as

cos(Dαn) = cos(Dcos−1(xn)). (15)

Note that (15) can be expressed using the Chebyshev
polynomial of order D, i.e., CD(xn).

Using (14) and (15), we rewrite (1) as

HGCFN
(z) =AN

(

1− z−D

1− z−1

)p

m

∏
n=1

1− 2cos(Dcos−1 xn)z
−D + z−2D

1− 2xnz−1 + z−2

=AN

(

1− z−D

1− z−1

)p m

∏
n=1

1− 2CD(xn)z
−D + z−2D

1− 2xnz−1 + z−2
.

(16)

The obtained result (16) shows that the problem to im-
plement the coefficients in (1) is reduced to the problem of
the computation of the Chebyshev polynomials of order D.
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Figure 2: Implementation of C7(x) based on (13).
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Figure 3: Decimation filter structure in Example 1.

Now, we turn our attention to the multiplierless imple-
mentation of the value xn. For D ≥ 2 and ν ≥ 2, we approxi-
mate cos(αn) using two first terms of Taylor polynomial, that
is,

xn = cos(αn)≈ 1−α2
n/2. (17)

Rounding the constant α2
n/2 as a power of two, i.e., 2kn ,

n = 1, . . . ,m, equation (17) becomes

xn = 1− 2kn. (18)

From (17) and (18), the value of kn can be estimated as

kn = ⌊log2(1− cosαn)⌋ , (19)

where ⌊·⌋ stands for the floor function.
Next example illustrates the application of the Chebyshev

polynomial in GCF.
Example 1. We design a generalized comb filter us-

ing the following specifications: The decimation factor D is
equal to seven, the order of the GCF is four and the integer
ν is four. Therefore, using the optimized values of q1 and q2

given in [6], we have q1 = 0.35 and q2 = 0.88.

The rational transfer function of GCF is

HGCF4
(z)=A4

1− 2C7(x1)z
−7 + z−14

1− 2x1z−1 + z−2

1− 2C7(x2)z
−7 + z−14

1− 2x2z−1 + z−2
,

(20)

Using (19), we have k1 = −9 and k2 = −11. Conse-
quently, x1 = 1− 2−9 and x2 = 1− 2−11.

Substituting the resulting values of x1 and x2 into
(13) gives C7(x1) = 0.905783498857570 and C7(x2) =
0.976167542024052.

The implementation of the resulting decimation filter is
shown in Fig. 3(a). The coefficients C7(x1) and C7(x2) are
implemented as shown in Fig. 2. Additionally, the imple-
mentations of x1 and x2 are shown in Figs. 3(b) and 3(c),
respectively.

Figure 4 shows the pole/zero pattern of the proposed
GCF. Note the perfect pole-zero cancelation around the fre-
quency ω = 0. The magnitude responses of the GCF4 and
proposed quantized GCF4 are shown in Fig. 5. Also note
that the proposed filter has a higher attenuations in the fold-
ing bands than the GCF. However the GCF folding bands are
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Figure 4: Pole/zero pattern of the GCF in Example 1.
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Figure 5: Magnitude responses of the GCF and quantized
GCF in Example 1.

4. IMPLEMENTATION COMPLEXITY

In this section we turn our attention to the complexity of the
proposed GCF implementation.

We first consider the complexity of xn. From (18), we
observe that xn requires

• one two-input adder and

• one shift.

Next we consider the complexity of second order Cheby-
shev polynomial,

C2(xn) = 2x2
n − 1

= 2
(

1− 2kn

)2

− 1. (21)

It requires

• three two-input adders and

• three shifts.

Similarly, the Chebyshev polynomial

C3(xn) = xn

(

2
(

2x2
n − 1

)

− 1
)

=
(

1− 2kn

)

(

2

(

2
(

1− 2kn

)2

− 1

)

− 1

)

(22)

needs

• five two-input adders and

• five shifts.

Generally the D-order Chebysev polynomial needs

• 2D− 1 two-input adders and

• 2D− 1 shifts.

Finally, using the previous result for the computation of
the complexity of D-order Chebyshev polynomial and using
(16), we find the following expression of the complexity of
the of generalized comb filter GCF of order N in terms of
two-input adders and shifts. The implementation needs NA

two-input adders and NS shifts, where

NA = 2N +

⌊

N

2

⌋

(2D− 1), (23)

NS = 2

⌊

N

2

⌋

+

⌊

N

2

⌋

(2D− 1). (24)

Observe that, for a given order N, the values of NA and
NS are linear functions of D as illustrated in Figs. 6 and 7.
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100

200
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400

Figure 6: Number of adders.

Using (23) and (24), we find that the GCF decimation
structure in Example 1 requires 34 two-input adders and 34
shifts.

5. DISCUSSION OF RESULTS

The proposed method presents a general approach to the
problem of multiplierless GCF implementation solved in [7].
The pole-zero cancelation is achieved in both methods.

The advantage of our approach, based on Chebyshev
polynomials, is the closed form equations for the implemen-
tation of cos(Dαn) for any degree D. Additionally the equa-
tions to compute the implementation complexity for any D
are provided.

The method [7] based on trigonometric identities gives
the closed form equation for cos(Dα), D = 2,3,4,8, which
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Figure 7: Number of shifts.

is the same as Chebyshev polynomials in Table 1 when
x = cosα . However the proposed approach uses the efficient
implementation of Chebyshev polynomials based on (5) and
(6). As a consequence the proposed approach results in less
complexity as shown in the following example.

Example 2. Now, we design the GCF filter using the
specifications given in [7], i.e., N = 3, D = 8, ν = 8, q1 =
0.79.

The resulting transfer function is

HGCF3
(z) = A3

1− z−8

1− z−1

1− 2C8(x1)z
−8 + z−16

1− 2x1z−1 + z−2
, (25)

where x1 = 1− 2−11.
Applying recursively (6) to C8(x1), we have

C8(x1) = 2
(

2(2x1 − 1)2 − 1
)2

− 1. (26)

According to (23) and (24), the implementation of the re-
sulting structure involves 21 adders and 17 shifts. However,
method [7] requires 32 adders and 24 shifts. Therefore the
proposed approach saves 11 adders and 7 shifts.

Figure 8 shows the magnitude responses of the quan-
tized GCF3 using Chebyshev polynomials and the method
[7]. Note that the magnitude responses are equal.

6. CONCLUSIONS

This paper presents a general approach to the multiplierless
implementation of recursive GCF filters, based on Cheby-
shev polynomials. The perfect pole-zero cancelation is guar-
anteed since the coefficients of the numerator and denomina-
tor are related with a corresponding Chebyshev polynomial
of order D. The advantage of the proposed approach is the
provided closed form equations for the computation of the
adders and shifts in terms of the order of the GCFN and the
decimation factor D. Another advantage is the closed form
equation for the implementation of the multiplier cos(Dαn).
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