
NONLINEAR ADAPTIVE FILTERING TECHNIQUES WITH MULTIPLE KERNELS

Masahiro Yukawa

Department of Electrical and Electronic Engineering, Niigata University
2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181 Japan

phone/fax: +81 (25) 262 7549, email: yukawa@eng.niigata-u.ac.jp

ABSTRACT

In this paper, we propose a novel approach using multiple kernels
to nonlinear adaptive filtering problems. We present two types of
multi-kernel adaptive filtering algorithms, both of which are based
on the kernel normalized least mean square (KNLMS) algorithm
(Richard et al., 2009). One is a simple generalization of KNLMS,
adopting the coherence criterion for dictionary selection. The other
is derived by applying the adaptive proximal forward-backward
splitting method to a certain squared distance function penalized
by a weighted block `1 norm. The latter algorithm operates the
weighted block soft-thresholding which encourages the sparsity of
dictionary at the block level. Numerical examples demonstrate the
efficacy of the proposed approach.

1. INTRODUCTION

Kernel has been proven an attractive tool in adaptive filtering and
online learning when the desired response is a nonlinear function of
input data [1–7]; see [8] for a comprehensive introduction to kernel
adaptive filtering. The major advantages of the kernel-based ap-
proach include that it involves (i) no local minima unlike the neural
network approach, and (ii) a marginal number of parameters unlike
the Volterra series based approach. One of its central issues is that
the size of dictionary1 grows linearly with the number of input data
observed. This obviously conflicts with the limitations of memory
and computational resource/time. Several sparsification techniques
have been proposed and investigated for updating the dictionary in
such a way that only dominant ones remain among basis vectors.

Kernel design is another important issue, as witnessed by the
successive studies on kernel selection; see [9–11] among many oth-
ers. Those previous studies have been done exclusively for batch
processing, and the techniques developed are not suitable for online
processing. In the literature of kernel adaptive filtering or online
learning, a reasonable kernel has been assumed available prior to
adaptation, which is however not always possible.

This paper proposes efficient nonlinear adaptive filtering tech-
niques using a set of kernels, typically Gaussian with different ker-
nel parameters. Although there are other possible approaches to
exploiting multiple kernels, we restrict ourselves to extending the
kernel normalized least mean square (KNLMS) algorithm [6] in
the current study. First, we derive a multi-kernel NLMS algorithm
adopting a coherence-based criterion for the dictionary construc-
tion. Second, we present another multi-kernel NLMS algorithm
based on iterative use of metric projection and weighted block soft-
thresholding. The latter algorithm is derived by applying the adap-
tive proximal forward-backward splitting method [12] to the fol-
lowing cost function: a certain squared distance (smooth) plus a
weighted block `1 norm (nonsmooth). The weighted block soft-
thresholding promotes sparsity of the dictionary at the block level.

1The term “dictionary” stands for the set of basis vectors that are used to
construct a nonlinear estimator.

Thanks to this property, the algorithm keeps its computational effi-
ciency when applied to the problems with high dimensional inputs.
The estimator of the proposed approach can be characterized as an
element of a Cartesian product of the reproducing kernel Hilbert
spaces associated respectively with the kernels employed. Numeri-
cal examples support the advantages of the proposed algorithms.

2. KERNEL NLMS ALGORITHM

Let un ∈ U be an input vector at time instant n ∈ N, and dn ∈ R

the desired response depending nonlinearly on un. Here U is a
compact subset of the L dimensional Euclidean space R

L. The task
is to find the nonlinear dependency in an online fashion with the
measurements (un,dn) arriving sequentially.

In the kernel adaptive filtering approach, a filter (or an esti-
mator) is modeled as an element of the reproducing kernel Hilbert
space (RKHS) associated with a kernel κ : U ×U →R [8, 13–15].
One of the celebrated examples is the Gaussian kernel defined as
follows: κ(x,y) := exp

(
−α ‖x−y‖2

)
, ∀x,y ∈ U , for the ker-

nel parameter α > 0. For the sake of simple notation, we denote
by ‖·‖ the Euclidean norm in any dimension space. It is known
that the Gaussian kernel has the universal approximation property
[8]. Data sparsification is necessary to limit the computational
costs to a manageable amount. Let Jn−1 := {ω1,ω2, · · · ,ωrn−1} ⊂
{0,1, · · · ,n−1} indicate the dictionary (κ(·,u j)) j∈Jn−1 that forms
a nonlinear estimator at time n, where rn−1 denotes the size of dic-
tionary. The estimator producing an estimate of dn is given as fol-
lows:

ψn(u) := ∑
j∈Jn−1

h j,nκ(u,u j), u ∈ U , (1)

where h j,n ∈ R, j ∈ Jn−1, are the parameters determined
by an adaptive algorithm with the set of input-output data
(u j,d j)

n−1
j=0 . Define hn := [hω1,n,hω2,n, · · · ,hωrn−1 ,n]

T ∈ R
rn−1 and

kn := [κ(un,uω1),κ(un,uω2), · · · ,κ(un,uωrn−1
)]T ∈ R

rn−1 , where

(·)T stands for transpose. An estimate of dn is then given as
d̂n = ψn(un) = kT

n hn, n ∈ N. The point here is how to design the
dictionary and how to update the coefficients h j,n.

In [6], a coherence-based dictionary-designing scheme has been
proposed. Suppose for simplicity that the kernel has a unit Hilber-
tian norm, i.e., κ(x,x) = 1, ∀x ∈ U ; the Gaussian kernel satisfies
this condition. With the initial dictionary {κ(·,u0)} indicated by
J−1 := {0}, the scheme inserts κ(·,un), n ∈ N, into the dictionary
if the following condition is satisfied:

max
j∈Jn−1

∣∣κ(un,u j)
∣∣ ≤ δ , n ∈ N, (2)

where δ > 0 is the threshold that governs the degree of sparsity
and the coherence of the dictionary. Letting ζa > 0 and ζb > 0 be
kernel parameters of Gaussian kernels, the same dictionary size is

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 136

obtained by setting their corresponding thresholds δa > 0 and δb > 0
such that δ ζb

a = δ ζa
b ; this idea is used to determine the values of δ

in Section 4.
With the initial h0 = h0,0 := 0, the step size η ∈ [0,2], and the

regularization parameter ρ > 0, the update rule of KNLMS is given
as follows.

(i) If (2) is unsatisfied, Jn := Jn−1, and

hn+1 := hn +η
dn −kT

n hn

‖kn‖
2 +ρ

kn. (3)

(ii) If (2) is satisfied, Jn := Jn−1 ∪{n}, and

hn+1 := h̄n +η
dn − k̄T

n h̄n∥∥k̄n
∥∥2

+ρ
k̄n, (4)

where k̄n := [kT
n ,κ(un,un)]

T and h̄n := [hT
n ,0]T.

Although its affine projection version is proposed in [6], we solely
consider the NLMS version to present our idea as simply as possi-
ble.

3. MULTI-KERNEL NLMS ALGORITHMS

We present multi-kernel NLMS algorithms based on two differ-
ent sparsification techniques. Let κm : U ×U → R, m ∈ M :=
{1,2, · · · ,M}, be a set of M distinct kernels to be employed.

3.1 Algorithm with Coherence-based Sparsification

With J CS
n−1 := {ω1,ω2, · · · ,ωrn−1} ⊂ {0,1, · · · ,n−1} indicating a

dictionary, our estimator takes the following form:

ψn(u) := ∑
m∈M

∑
j∈J CS

n−1

h(m)
j,n κm(u,u j), u ∈ U , (5)

where h(m)
j,n ∈ R, m ∈ M , j ∈ J CS

n−1. The estimates d̂n := ψn(un)
of dn can be rewritten in a vector form as follows:

ψn(un) = ∑
m∈M

hT
m,nkm,n, (6)

where hm,n := [h(m)
ω1,n,h

(m)
ω2,n, · · · ,h

(m)
ωrn−1 ,n]

T ∈ R
rn−1 and km,n :=

[κm(un,uω1),κm(un,uω2), · · · ,κm(un,uωrn−1
)]T ∈ R

rn−1 . More-
over, it can be written in a matrix form as

ψn(un) = tr
(
HT

n Kn

)
, (7)

where Hn := [h1,n h2,n · · ·hM,n], Kn := [k1,n k2,n · · ·kM,n], and
tr(·) stands for the trace of matrix.

The dictionary is constructed based on the following criterion:

‖Kn‖max := max
m∈M

max
j∈J CS

n−1

∣∣κm(un,u j)
∣∣ ≤ δCS, n ∈ N, (8)

where δCS > 0 is the threshold. In the same way as [6, Proposition
2], it can readily be proved that the dictionary size under (8) is finite
for any sequence (un)

∞
n=1 ⊂ U due to the compactness of U .

Let H0 = [h(1)
0,0,h

(2)
0,0, · · · ,h

(M)
0,0] := 0T

M be the initial row vector,
where 0M ∈R

M denotes the length M zero vector. With the step size
ηCS ∈ [0,2] and the regularization parameter ρCS > 0, the update
rule is given as follows.

(i) If (8) is unsatisfied, J CS
n := J CS

n−1 and

Hn+1 := Hn +ηCS
dn − tr

(
HT

n Kn
)

‖Kn‖
2
F +ρCS

Kn, (9)

where ‖·‖F denotes the Frobenius norm.
(ii) If (8) is satisfied, J CS

n := J CS
n−1 ∪{n} and

Hn+1 := H̄n +ηCS
dn − tr

(
K̄T

n H̄n
)

∥∥K̄n
∥∥2

F +ρCS
K̄n, (10)

where H̄n := [HT
n 0M]T and K̄n := [KT

n k̄n]
T with k̄n :=

[κ1(un,un),κ2(un,un), · · · ,κM(un,un)]
T.

We name the above algorithm the multi-kernel NLMS algorithm
with coherence-based sparsification (MKNLMS-CS). For M = 1,
the MKNLMS-CS algorithm coincides with the KNLMS algorithm,
and hence it is a generalization of KNLMS.

3.2 Algorithm with Block Soft-thresholding

In R
p×q for any p,q ∈ N \ {0}, define an inner product as

〈A,B〉 := tr
(
ATB

)
, A,B ∈ R

p×q, and its induced norm as
‖A‖ :=

√
〈A,A〉 = ‖A‖F, A ∈ R

p×q. If in particular q = 1,
the inner product and norm are reduced respectively to the stan-
dard inner product and the Euclidean norm. With J BT

n−1 :=
{ω1,ω2, · · · ,ωrn−1} ⊂ {0,1, · · · ,n− 1} indicating a dictionary, our
estimator produces an estimate of dn in the following form:

ψn(un) = 〈Hn,Kn〉 , (11)

where Hn and Kn are defined as in Section 3.1.
Define the metric distance d(H,Πn) := minG∈Πn ‖H−G‖ be-

tween H ∈ R
(rn−1+1)×M and

Πn :=
{
X ∈ R

(rn−1+1)×M :
〈
K̄n,X

〉
= dn

}
, (12)

where K̄n := [KT
n k̄n]

T ∈ R
(rn−1+1)×M is the same as defined in

Section 3.1. Our cost function is then given as follows:

Θn(H) :=
1
2

d2(H,Πn)
︸ ︷︷ ︸
=: Θ(1)

n (H)

+λ
rn−1+1

∑
i=1

wi,n ‖hi‖

︸ ︷︷ ︸
=: Θ(2)

n (H)

, n ∈ N, (13)

H =
[
hT

1 hT

2 · · ·hT

rn−1+1

]
T

∈ R
(rn−1+1)×M . (14)

Here λ > 0 and

wi,n :=
{

ε, if ‖hi‖ > τ,
1, otherwise, i = 1,2, · · · ,rn−1 +1, (15)

with ε > 0 and τ > 0. The squared distance term Θ(1)
n in (13) con-

tributes to reducing the empirical risks. Meanwhile, the (weighted)
block `1 regularization term Θ(2)

n promotes the sparsity of the es-
timator at the block level, where the (block) sparsity is controlled
by the parameters λ , ε , and τ . The block `1 norm has been used,
as an alternative to the nowadays popular `1 regularization, for an
estimator involving a block structure, such as in the grouped Lasso
estimator [16], the block-sparse signal recovery [17], and the multi-
ple kernel learning [18]. If the block size is M = 1, it coincides with
the (weighted) `1 norm.

Since the block `1 norm is nonsmooth, the stochastic gradient
approach cannot be applied to Θn. Noticing however that Θn is the

137

sum of smooth and nonsmooth convex functions, we can apply the
adaptive proximal forward-backward splitting method [12].2 De-
fine the augmented matrix H̄n := [HT

n 0M]T ∈ R
(rn−1+1)×M . The

dictionary is initialized as J BT
−1 := /0, which makes K̄0 = k̄T

0 :=
[κ1(u0,u0),κ2(u0,u0), · · · ,κM(u0,u0)] and H̄0 = 0T

M . The pro-
posed algorithm is given as follows:

Hn+1 := T
[
proxµΘ(2)

n

(
H̄n −µ∇Θ(1)

n (H̄n)
)]

, n ∈ N. (16)

where µ ∈ (0,2) is the step size parameter3 and ∇Θ(1)
n denotes the

gradient of Θ(1)
n . The algorithm, including the operators T and

proxµΘ(2)
n

, is elaborated below in three steps.
Step 1: Compute

H̄
(1)
n := H̄n −µ∇Θ(1)

n (H̄n) = H̄n + µ
(
PΠn(H̄n)−H̄n

)
, (17)

where

PΠn(H) := argmin
G∈Πn

‖H−G‖ , H ∈ R
(rn−1+1)×M, (18)

denotes the projection of H onto Πn, and it is readily verified that

PΠn(H̄n) = H̄n +
dn −

〈
K̄n,H̄n

〉
∥∥K̄n

∥∥2 K̄n. (19)

Step 2: Compute

H̄
(2)
n := proxµΘ(2)

n
(H̄

(1)
n), (20)

where

proxµΘ(2)
n

: R
(rn−1+1)×M → R

(rn−1+1)×M

H 7→ argmin
G∈R

(rn−1+1)×M
Θ(2)

n (G)+
1

2µ
‖H−G‖2 (21)

is called the proximity operator of Θ(2)
n of index µ [19]. The ith row

of H̄
(2)
n is computed as [20]

(H̄
(2)
n)i = max



1−

λ µwi,n∥∥∥(H̄
(1)
n)i

∥∥∥
,0



 (H̄

(1)
n)i ∈ R

1×M ,

i = 1,2, · · · ,rn−1 +1, (22)

where (·)i denotes the ith row of matrix. The operator in (22) is
essentially equivalent to the operator exploited in [21, Eq. (2.4)]; we
call it weighted block soft-thresholding. The weighted block soft-
thresholding operator eliminates the blocks (i.e., the row vectors)
(H̄

(1)
n)i having small norms, since such blocks make no significant

contribution in estimating dn. Accordingly the parameters ε and τ
in (15) should be reasonably small so that the blocks (H̄

(1)
n)i having

sufficiently large norms are not seriously affected.
Step 3: Compute

Hn+1 = T (H̄
(2)
n) ∈ R

rn×M , (23)
2The method is an adaptive extension of the proximal forward-backward

splitting method [19], which is a powerful tool for various problems includ-
ing, among many others, constrained least-squares problems, multiresolu-
tion sparse regularization problems, and total variation problems.

3The range of step size is generally (0,2/γ), where γ > 0 is the Lipschitz
constant of ∇Θ(1)

n . In our case, the Lipschitz constant is γ = 1.

Table 1: Computational complexity and memory requirements of
KNLMS, MKNLMS-CS, and MKNLMS-BT with Gaussian ker-
nels.

KNLMS MKNLMS-CS MKNLMS-BT
Multiplication (L +3)rn (L +3M)rn (L +5M)rn
Exponential rn Mrn Mrn

Memory (L +1)rn (L +M)rn (L +M)rn

where T is an operator that eliminates all the zero row vectors, and
rn ∈N denotes the number of nonzero row vectors of H̄

(2)
n . Namely,

Hn+1 consists of all the nonzero row vectors of H̄
(2)
n . The set

J BT
n ⊂ J BT

n−1 ∪{n} is obtained by eliminating from J BT
n−1 ∪{n}

all the indices that correspond to the zero row vectors of H̄
(2)
n .

We name the algorithm in (16) the multi-kernel NLMS algo-
rithm with block soft-thresholding (MKNLMS-BT).

3.3 Computational Complexity and Remarks

We discuss the computational complexity and memory require-
ments of the proposed algorithms. Suppose that M Gaussian kernels
with different kernel parameters αm, m = 1,2, · · · ,M, are employed,
as the overall complexity depends on the kernels. The complexity
and memory requirements of the proposed and KNLMS algorithms
are summarized in Table 1. Note that, given a u j , j ∈ J CS

n−1, the
computation of κm(u j,un) for all m = 1,2, · · · ,M requires no more

than L + M multiplications. This is because (i) once
∥∥u j −un

∥∥2

is computed, it can be used for evaluating all κm(u j,un)s, and (ii)
exp(−αm), m = 1,2, · · · ,M, can be calculated and stored prior to
adaptation.

As will be seen in the following section, the use of multiple
kernels allows us to achieve the same amount of error as the sin-
gle kernel case with a smaller value of rn. Let β ∈ (0,1) denote
the ratio of the rn value of MKNLMS-CS, or MKNLMS-BT, to
that of KNLMS. Then, MKNLMS-CS, or MKNLMS-BT, has lower
complexity than KNLMS provided that L > (4βM−3)/(1−β), or
L > (6βM − 3)/(1− β). Here the complexity for an exponential
calculation is counted as that for a multiplication. Moreover the
memory requirements of both MKNLMS-CS and MKNLMS-BT
are lower than that of KNLMS provided that L > (βM−1)/(1−β).
We emphasize that the efficiency of MKNLMS-BT in computation
and memory requirements is due to the block soft-thresholding op-
erator. Some remarks on the proposed algorithms are given below.

Remark 1
(a) A kernel adaptive filter is characterized as an element of RKHS

associated with a kernel employed. In the multi-kernel ap-
proach, however, we have multiple RKHSs associated with
the kernels. How can we characterize our estimators? In-
deed the estimator of MKNLMS-CS in (5) is characterized
as an element of the Cartesian product of the M RKHSs as(

∑ j∈J CS
n−1

h(1)
j,nκ1(·,u j), · · · ,∑ j∈J CS

n−1
h(M)

j,n κM(·,u j)
)

. The in-
ner product in the product space is defined as the sum of the
inner products in each RKHS; the same applies to MKNLMS-
BT. It has been shown in [20] that a positive definite kernel can
be defined in the product space and that the reproducing prop-
erty of RKHS is handed down to the product space as well as
the representer theorem. The proposed approach is more gen-
eral than the one trying to design an optimal kernel as a convex
combination of multiple kernels [9–11].

(b) When the data are nonstationary, kernel functions that make
significant contribution in estimation tend to change from time

138

to time. In such a scenario, the MKNLMS-BT algorithm dis-
cards wasted kernel functions from the dictionary. In contrast,
the MKNLMS-CS algorithm keeps all the kernel functions dur-
ing the whole adaptation process once they are inserted into the
dictionary.

(c) From a theoretical point of view, it would be more ap-
propriate to present the MKNLMS-BT algorithm in the M-
fold Cartesian product of the `2 space [20]. We take the
present form as it is more convenient for implementation.
The algorithm enjoys the monotone approximation property:
if Ωn := argmin

H∈R
(rn−1+1)×M Θn(H) 6= /0 and H̄n 6∈ Ωn, then∥∥∥H̄(2)

n −H∗
∥∥∥ <

∥∥H̄n −H∗
∥∥, ∀H∗ ∈ Ωn.

4. NUMERICAL EXAMPLES

We compare the performance of the proposed algorithms
with KNLMS [6] in online prediction of highly nonlinear
time series generated by dn := [0.8 − 0.5exp(−d2

n−1)]dn−1 −[
0.3+0.9exp(−d2

n−1)
]

dn−2 + 0.1sin(dn−1π) with d−2 := d−1 :=
0.1; this is a benchmark problem described in [6]. The signals dn
are corrupted by a zero-mean Gaussian noise with variance 0.01.
Each datum dn is predicted with un := [dn−1,dn−2]

T, n ∈ N, in an
online fashion (i.e., L = 2).

In all the simulations, we fix the step size of KNLMS,
MKNLMS-CS, and MKNLMS-BT to η = ηCS = µ = 9.0×10−2 ,
and the regularization parameter of KNLMS and MKNLMS-CS to
ρ = 3.0×10−2 and ρCS = 3.0M×10−2, respectively. For the pro-
posed algorithms, we adopt Gaussian kernels with different kernel
parameters α1,α2, · · · ,αM . For KNLMS, we also adopt a Gaussian
kernel.

Figure 1(a) depicts the learning curves of MKNLMS-CS for
M = 2, α1 = 1, α2 = 4, and KNLMS for α = 3.73; this choice of α
is also used in [6]. The thresholds for KNLMS and MKNLMS-CS
are set respectively to δ = 0.24 and δCS = 0.68 so that the average
values of rn of both algorithms are approximately 12. MSE is cal-
culated by taking an arithmetic average over 200 experiments. For
reference, the learning curve of NLMS for the step size 0.012 is also
plotted.

Figure 1(b) depicts the learning curves of MKNLMS-BT for
M = 2, α1 = 1,α2 = 10, and KNLMS for α = 1,3,10. The thresh-
old for KNLMS is set to δ = 0.8, 0.55, 0.13 so that the average val-
ues of rn of both algorithms are approximately 20. For the proposed
algorithm, we set the parameters to λ = 5.0×10−2, ε = 1.0×10−5,
τ = 1.5× 10−2; the same values of λ and ε are used in all the ex-
periments in this paper.

Figure 2 plots MSE against the average value of rn for KNLMS
with α = 3.73, and MKNLMS-CS and MKNLMS-BT with M = 2,
α1 = 1, α2 = 4. The marked points are obtained by changing δ ,
δCS, and τ as follows. δ is varied from 0.15 to 0.2 in increments of
0.01 and from 0.2 to 0.7 in increments of 0.02. δCS is varied from
0.3 to 0.9 in increments of 0.02. τ is varied from 0.7×10−2 to 3.7×
10−2 in increments of 0.1×10−2 . The MSE values are obtained by
averaging over the last 2,000 samples of 10,000 samples for 200
experiments.

Figure 3 plots the MSEs of KNLMS, MKNLMS-CS, and
MKNLMS-BT for different choices of kernel parameters. For
KNLMS, we change α within the range of [0.5,10]. For MKNLMS-
CS and MKNLMS-BT, we fix α1 = 1.0 for M = 2, and change α2
within the range of [0.5,10]. For comparison, we also plot the MSE
of NLMS for the step size 0.012. The value of δ , δCS, or τ is cho-
sen for each α or α2 so that the average value of rn becomes 20
approximately. The MSE values are calculated in the same way as
in Fig. 2.

0 2000 4000 6000 8000 10000

10
−2

10
−1

Number of Iterations

M
S

E

PSfrag replacements

NLMS

KNLMS (α = 3.73)

MKNLMS-CS (α1 = 1, α2 = 4)
MKNLMS-BT (α1 = 1, α2 = 10)

KNLMS (α = 1)
KNLMS (α = 3)

KNLMS (α = 10)
(a) The average values of rn are 12 approximately

0 2000 4000 6000 8000 10000

10
−2

10
−1

Number of Iterations

M
S

E

PSfrag replacements

NLMS
KNLMS (α = 3.73)

MKNLMS-CS (α1 = 1, α2 = 4)

MKNLMS-BT (α1 = 1, α2 = 10)

KNLMS (α = 1)

KNLMS (α = 3)

KNLMS (α = 10)

(b) The average values of rn are 20 approximately

Figure 1: Learning curves of NLMS (green), KNLMS
(light/normal/dark blue), MKNLMS-CS (red), and MKNLMS-BT
(magenta).

The simulation results obtained suggest the following advan-
tages of the proposed algorithms.

1. Given a value of MSE, the multi-kernel approach could reduce
the average value of rn compared to KNLMS. This implies the
computational efficiency of the proposed approach when L be-
comes large (see Section 3.3).

2. Given an average value of rn, the multi-kernel approach could
improve the MSE performance compared to KNLMS. The im-
provement is considerable particularly when the average value
of rn is low. For instance, the difference in decibel between
the MSEs of KNLMS and MKNLMS-CS averaged over the last
2,000 samples in Fig. 1(a) is approximately 1.8 [dB].

3. Compared to the single kernel approach with a ’good’ kernel
parameter, the multi-kernel approach could achieve compara-
ble (or better) performance without specifying a good kernel
parameter. In other words, the proposed algorithm is insensi-
tive to the choice of kernel parameters (hence reducing the ef-
forts for the kernel-parameter selection). This implies that the
proposed approach is advantageous when data are nonstation-
ary and a good kernel parameter changes from time to time. In
such scenarios, in addition to the expected advantage in per-
formance, MKNLMS-BT will bring a particular advantage in
computational complexity and memory requirements (see Re-
mark 1(b)).

139

5 10 15 20 25 30 35

10
−2

M
S

E

PSfrag replacements

Average Value of rn

NLMS
KNLMS (α = 3.73)

MKNLMS-CS (α1 = 1, α2 = 4)

MKNLMS-BT (α1 = 1, α2 = 4)

Figure 2: MSE against the average value of rn.

0 2 4 6 8 10

10
−2

M
S

E

PSfrag replacements

NLMS
KNLMS

MKNLMS-BT (α1 = 1)

MKNLMS-CS (α1 = 1)

α (α2)

Figure 3: MSE against kernel parameters. The average values of rn
are 20 approximately.

5. CONCLUSION

The present study has exemplified that the use of multiple ker-
nels leads to efficient adaptive filtering for nonlinear systems. We
have presented two nonlinear adaptive filtering algorithms using
multiple kernels. The first algorithm (MKNLMS-CS) exploits the
coherence-based criterion for dictionary designing, while the sec-
ond algorithm (MKNLMS-BT) exploits the weighted block soft-
thresholding operator. The potential advantages of the proposed al-
gorithms have been discussed on the ground of the numerical exam-
ples. Further investigations will be required to clarify comparative
merits and demerits of the MKNLMS-CS and MKNLMS-BT algo-
rithms. We repeat finally that there are other possible approaches, to
be investigated, to exploiting multiple kernels in adaptive filtering.

Acknowledgements: This work was partially supported by KDDI
Foundation.

REFERENCES

[1] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learn-
ing with kernels,” IEEE Trans. Signal Process., vol. 52, no. 8,
pp. 2165–2176, Aug. 2004.

[2] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-
squares algorithm,” IEEE Trans. Signal Process., vol. 52, no.
8, pp. 2275–2285, Aug. 2004.

[3] A. V. Malipatil, Y.-F. Huang, S. Andra, and K. Bennett, “Ker-
nelized set-membership approach to nonlinear adaptive filter-
ing,” in Proc. IEEE ICASSP, 2005, pp. 149–152.

[4] W. Liu and J. Prı́ncipe, “Kernel affine projection algorithms,”
EURASIP J. Adv. Signal Process., vol. 2008, pp. 1–12, 2008,
Article ID 784292.

[5] K. Slavakis, S. Theodoridis, and I. Yamada, “Online kernel-
based classification using adaptive projection algorithms,”
IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2781–2796,
July 2008.

[6] C. Richard, J. Bermudez, and P. Honeine, “Online prediction
of time series data with kernels,” IEEE Trans. Signal Process.,
vol. 57, no. 3, pp. 1058–1067, Mar. 2009.

[7] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learn-
ing in a world of projections: a unifying framework for lin-
ear and nonlinear classification and regression tasks,” IEEE
Signal Processing Magazine, vol. 28, no. 1, pp. 97–123, Jan.
2011.

[8] W. Liu, J. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering,
Wiley, New Jersey, 2010.

[9] N. Cristianini, A. Elisseeff, J. Shawe-Taylor, and J. Kandla,
“On kernel target alignment,” Adv. Neural Information Pro-
cessing Systems (NIPS), vol. 13, pp. 367–373, 2001.

[10] G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I.
Jordan, “Learning the kernel matrix with semi-definite pro-
gramming,” J. Mach. Learn. Res., vol. 5, pp. 27–72, 2004.

[11] C. S. Ong, A. J. Smola, and R. C. Williamson, “Learning the
kernel with hyperkernels,” J. Mach. Learn. Res., vol. 6, pp.
1043–1071, 2005.

[12] Y. Murakami, M. Yamagishi, M. Yukawa, and I. Yamada, “A
sparse adaptive filtering using time-varying soft-thresholding
techniques,” in Proc. IEEE ICASSP, 2010, pp. 3734–3737.

[13] N. Aronszajn, “Theory of reproducing kernels,”
Trans. Amer. Math. Soc., vol. 68, no. 3, pp. 337–404,
May 1950.

[14] V. N. Vapnik, Statistical Learning Theory, Wiley, New York,
1998.

[15] B. Schölkopf and A. J. Smola, Learning with Kernels, MIT
Press, Cambridge, MA, 2001.

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer, New York, 2nd edition, 2009.

[17] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruc-
tion of block-sparse signals with an optimal number of mea-
surements,” IEEE Trans. Signal Process., vol. 57, no. 8, pp.
3075–3085, Aug. 2009.

[18] F. R. Bach, “Consistency of the group lasso and multiple ker-
nel learning,” J. Mach. Learn. Res., vol. 9, pp. 1179–1225,
2008.

[19] P. L. Combettes and V. R. Wajs, “Signal recovery by proxi-
mal forward-backward splitting,” SIAM Journal on Multiscale
Modeling and Simulation, vol. 4, pp. 1168–1200, 2005.

[20] M. Yukawa, “On use of multiple kernels in adaptive learning
—Extended reproducing kernel Hilbert space with Cartesian
product,” in Proc. IEICE Signal Processing Symposium, Nov.
2010, pp. 59–64.

[21] M. Yuan and Y. Lin, “Model selection and estimation in re-
gression with grouped variables,” J. R. Statist. Soc. B, vol. 68,
no. 1, pp. 49–67, 2006.

140

